World Health Organization. World malaria report 2018. World Health Organization; 2019. https://www.who.int/publications/i/item/9789241565653.
Google Scholar
Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan-American Health Organization/WHO. Interactive malaria statistics. Pan American Health Organization/World Health Organization. http://www.paho.org/hq/index.php?option=com_content&view=article&id=2632:2010-interactive-malaria-statistics&Itemid=2130&lang=en. Accessed 15 Nov 2019
Hiwat H, Bretas G. Ecology of Anopheles darlingi root with respect to vector importance: a review. Parasit Vectors. 2011;4:177.
Article
PubMed
PubMed Central
Google Scholar
Forattini OP. Culicidologia médica: identificaçäo, biologia e epidemiologia: v 2. Sao Paulo: Editora da Universidade de Sao Paulo. 2002.
dos Reis IC, Codeço CT, Degener CM, Keppeler EC, Muniz MM, de Oliveira FGS, et al. Contribution of fish farming ponds to the production of immature Anopheles spp. in a malaria-endemic Amazonian town. Malar J. 2015;14:452.
Article
PubMed
PubMed Central
Google Scholar
Reis IC, Codeço CT, Câmara DCP, Carvajal JJ, Pereira GR, Keppeler EC, et al. Diversity of Anopheles spp (Diptera: Culicidae) in an Amazonian Urban Area. Neotrop Entomol. 2018;47(3):412–17. https://doi.org/10.1007/s13744-018-0595-6.
Article
CAS
PubMed
Google Scholar
Moreno M, Saavedra MP, Bickersmith SA, Prussing C, Michalski A, Tong Rios C, et al. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Negl Trop Dis. 2017;11:e0005337.
Article
PubMed
PubMed Central
Google Scholar
Saavedra MP, Conn JE, Alava F, Carrasco-Escobar G, Prussing C, Bickersmith SA, et al. Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon. Parasit Vectors. 2019;12:374.
Article
PubMed
PubMed Central
Google Scholar
Rozendaal JA. Observations on the distribution of anophelines in Suriname with particular reference to the malaria vector Anopheles darlingi. Mem Inst Oswaldo Cruz. 1990;85:221–34.
Article
CAS
PubMed
Google Scholar
Consoli R, Lourenço-de-Oliveira R. Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro: Fiocruz Google Scholar; 1994.
Book
Google Scholar
Emerson KJ, Conn JE, Bergo ES, Randel MA, Sallum MAM. Brazilian Anopheles darlingi root (Diptera: Culicidae) clusters by major biogeographical region. PLoS ONE. 2015;10:e0130773.
Article
PubMed
PubMed Central
Google Scholar
Campos M, Conn JE, Alonso DP, Vinetz JM, Emerson KJ, Ribolla PEM. Microgeographical structure in the major Neotropical malaria vector Anopheles darlingi using microsatellites and SNP markers. Parasit Vectors. 2017;10:76.
Article
PubMed
PubMed Central
Google Scholar
Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors. 2019;12:242.
Article
PubMed
PubMed Central
Google Scholar
Gorjanc G, Dumasy J-F, Gonen S, Gaynor RC, Antolin R, Hickey JM. Potential of low-coverage genotyping-by-sequencing and imputation for cost-effective genomic selection in biparental segregating populations. Crop Sci. 2017;57:1404–20.
Article
CAS
Google Scholar
Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–32.
Article
CAS
PubMed
Google Scholar
Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44:631–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rustagi N, Zhou A, Watkins WS, Gedvilaite E, Wang S, Ramesh N, et al. Extremely low-coverage whole genome sequencing in South Asians captures population genomics information. BMC Genomics. 2017;18:396.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 2011;21:940–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cathcart R, Roberts A. Evaluating Google Scholar as a tool for information literacy. Internet Ref Serv Q. 2005. https://doi.org/10.1300/j136v10n03_15.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST: architecture and applications. BMC Bioinform. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
Google Scholar
Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucl Acids Res. 2015;43:D707-13. https://doi.org/10.1093/nar/gku1117.
Article
CAS
PubMed
Google Scholar
Alvarez MVN. LCVCFtools v1.0.0-alpha. 2020. https://zenodo.org/record/4243800. Accessed 26 Nov 2020.
Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
CAS
PubMed
Google Scholar
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.
CAS
PubMed
Google Scholar
R Development Core Team. The R reference manual: base package. Network Theory; 2003.
TEAM, RStudio et al. RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com, 2015;42:14.
Gélin P, Magalon H, Drakeley C, Maxwell C, Magesa S, Takken W, et al. The fine-scale genetic structure of the malaria vectors Anopheles funestus and Anopheles gambiae (Diptera: Culicidae) in the north-eastern part of Tanzania. Int J Trop Insect Sci. 2016;36(4):161-170. https://doi.org/10.1017/s1742758416000175.
Article
Google Scholar
Salla LC, Rodrigues PT, Corder RM, Johansen IC, Ladeia-Andrade S, Ferreira MU. Molecular evidence of sustained urban malaria transmission in Amazonian Brazil, 2014–2015. Epidemiol Infect. 2020;148:e47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott JG. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. 1999;29:757–77.
Article
CAS
PubMed
Google Scholar
Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA. 2016;113:9268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibrahim SS, Ndula M, Riveron JM, Irving H, Wondji CS. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation. Mol Ecol. 2016;25:3436–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donnelly MJ, Isaacs AT, Weetman D. Identification, validation, and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends Parasitol. 2016;32:197–206.
Article
CAS
PubMed
Google Scholar
Mo W, Jian-Xia T, Ju-Lin L, Mei-Hua Z, Jing C, Sui X, et al. Study on expression characteristics of cytochrome P450 genes in Anopheles sinensis. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2018;30:149–54.
PubMed
Google Scholar
Gao Y, Kim K, Kwon DH, Jeong IH, Clark JM, Lee SH. Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth Plutella xylostella. Pestic Biochem Physiol. 2018;144:1–9.
Article
CAS
PubMed
Google Scholar
Ogueta M, Hardie RC, Stanewsky R. Non-canonical phototransduction mediates synchronization of the drosophila melanogaster circadian clock and retinal light responses. Curr Biol. 2018;28:1725-35.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong B, Bellen HJ. Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci. 2013;36:652–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adewoye AB, Nuzhdin SV, Tauber E. Mapping quantitative trait loci underlying circadian light sensitivity in Drosophila. J Biol Rhythm. 2017;32(5):394–405. https://doi.org/10.1101/135129.
Article
CAS
Google Scholar
Benna C, Bonaccorsi S, Wülbeck C, Helfrich-Förster C, Gatti M, Kyriacou CP, et al. Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr Biol. 2010;20:346–52.
Article
CAS
PubMed
Google Scholar