Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett. 2018;365:1–12.
Article
CAS
Google Scholar
Service MW. Importance of ecology in Aedes aegypti control. Southeast Asian J Trop Med. 1992;23:681–90.
Google Scholar
Gibbons RV, Vaughn DW. Dengue: an escalating problem. BMJ. 2002;324:1563–6.
Article
PubMed
PubMed Central
Google Scholar
Reiter P, Amador MA, Anderson RA, Clark GG. Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg. 1995;52:177–9.
Article
CAS
PubMed
Google Scholar
Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008;62:71–92.
Article
CAS
PubMed
Google Scholar
Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne Zoonotic Dis. 2010;10:259–66.
Article
PubMed
Google Scholar
Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140135.
Article
PubMed
PubMed Central
Google Scholar
Hills SL. Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission—continental United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65:5–12.
Article
Google Scholar
Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev. 2016;29:487–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, et al. Emergence and potential for spread of chikungunya virus in Brazil. BMC Med. 2015;13:1–11.
Article
Google Scholar
Focks DA, Chadee DD. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg. 1997;56:159–67.
Article
CAS
PubMed
Google Scholar
Gubler DJ. Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis. 1998;4:442–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calderón-Arguedas O, Troyo A, Solano ME. Diversidad larval de mosquitos (Diptera: Culicidae) en contenedores artificiales procedentes de una comunidad urbana de San José, Costa Rica. Parasitol Latino. 2004;59:132–6.
Article
Google Scholar
Costa F, Carvalho-Pereira T, Begon M, Riley L, Childs J. Zoonotic and vector-borne diseases in urban slums: opportunities for intervention. Trends Parasitol. 2017;33:660–2.
Article
PubMed
Google Scholar
Ministério da Saúde. Aedes Aegypti
Combate ao Aedes Aegypti: prevenção e controle da Dengue, Chikungunya e Zika. 2019. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z-1/a/aedes-aegypti. Accessed 01 May 2021.
Marini F, Caputo B, Pombi M, Tarsitani G, Della TA. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med Vet Entomol. 2010;24:361–8.
Article
CAS
PubMed
Google Scholar
Little E, Biehler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J Med Entomol. 2017;54:1183–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrera R, Amador M, Munoz J, Acevedo V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasit Vector. 2018;11:1–8.
Article
Google Scholar
Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014;8:e2848.
Article
PubMed
PubMed Central
Google Scholar
Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, Simmons C, et al. Towards a global dengue research agenda. Trop Med Int Health. 2007;12:695–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes ADC. Medidas dos níveis de infestação urbana para Aedes (Stegomyia) aegypti e Aedes (Stegomyia) albopictus em programa de vigilância entomológica. Inf Epidemiol Sus. 1998;7:49–57.
Article
Google Scholar
Higa Y. Dengue vectors and their spatial distribution. Trop Med Health. 2011;39:17–27.
Article
PubMed
PubMed Central
Google Scholar
Steffler LM, Marteis LS, dos Santos RLC. Fontes de informação sobre dengue e adoção de atitudes preventivas. Sci Plena. 2011;7:1–14.
Google Scholar
Parra MCP, Favaro EA, Dibo MR, Mondini A, Eiras AE, Kroon EG, et al. Using adult Aedes aegypti females to predict areas at risk for dengue transmission: a spatial case-control study. Acta Trop. 2018;182:43–53.
Article
PubMed
Google Scholar
Getis A, Morrison AC, Gray K, Scott TW. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg. 2003;69:494–505.
Article
PubMed
Google Scholar
Cromwell EA, Stoddard ST, Barker CM, Van Rie A, Messer WB, Meshnick SR, et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. Plos Negl Trop Dis. 2017;11:e0005429.
Article
PubMed
PubMed Central
Google Scholar
Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada G, Diaz G, Getis A, et al. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol. 2004;41:502–10.
Article
CAS
PubMed
Google Scholar
Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol. 2014;51:496–516.
Article
PubMed
Google Scholar
Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol. 2000;37:89–101.
Article
CAS
PubMed
Google Scholar
Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi NCS, Bastos NM, et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis. 2015;19:146–55.
Article
PubMed
Google Scholar
Misslin R, Vaguet Y, Vaguet A, Daudé É. Estimating air temperature using MODIS surface temperature images for assessing Aedes aegypti thermal niche in Bangkok, Thailand. Environ Monit Assess. 2018;190:1–17.
Article
Google Scholar
LaCon G, Morrison AC, Astete H, Stoddard ST, Paz-Soldan VA, Elder JP, et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl Trop Dis. 2014;8:e3038.
Article
PubMed
PubMed Central
Google Scholar
Ong J, Chong CS, Yap G, Lee C, Razak MAA, Chiang S, et al. Gravitrap deployment for adult Aedes aegypti surveillance and its impact on dengue cases. PLoS Negl Trop Dis. 2020;14:e0008528.
Article
PubMed
PubMed Central
Google Scholar
Bowman LR, Donegan S, McCall PJ. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10:e0004551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer IM, Kreb A, Klingelhöfer D, Scherer C, Phuyal P, Kuch U, et al. Does winter cold really limit the dengue vector Aedes aegypti in Europe? Parasit Vectors. 2020;13:1–13.
Article
Google Scholar
Lorenz C, Chiaravalloti-Neto F, Oliveira Lage M, Quintanilha JA, Parra MC, Dibo MR, et al. Remote sensing for risk mapping of Aedes aegypti infestations: is this a practical task? Acta Trop. 2020;205:105398.
Article
PubMed
Google Scholar
Lorenz C, Castro MC, Trindade PM, Nogueira ML, Oliveira Lage M, Quintanilha JA, et al. Predicting Aedes aegypti infestation using landscape and thermal features. Sci Rep. 2020;10:1–11.
Article
CAS
Google Scholar
Tsheten T, Gray DJ, Clements AC, Wangdi K. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia region. Trans R Soc Trop Med Hyg. 2021;3:2–13.
Google Scholar
Park J, Kim DI, Choi B, Kang W, Kwon HW. Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks. Sci Rep. 2020;10:1–12.
CAS
Google Scholar
Chiaravalloti-Neto F, Silva RA, Zini N, Silva GCD, Silva NS, Parra MCP, et al. Seroprevalence for dengue virus in a hyperendemic area and associated socioeconomic and demographic factors using a cross-sectional design and a geostatistical approach, state of São Paulo, Brazil. BMC Infect Dis. 2019;19:1–14.
Article
Google Scholar
Chiaravalloti NF. Descrição da colonização de Aedes aegypti na região de São José do Rio Preto, São Paulo. Rev Soc Bras Med Trop. 1997;30:279–85.
Article
Google Scholar
Instituto Brasileiro de Geografia e Estatística. Conheca
cidades e estados do Brasil. 2020. https://cidades.ibge.gov.br/. Accessed 02 May 2021.
Center for Meteorological and Climate Research Applied to Agriculture (CEPAGRI). 2013. https://www.cpa.unicamp.br/. Accessed 25 Feb 2020.
Consoli RA, Oliveira RLD. Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro: Fiocruz; 1994.
Book
Google Scholar
Forattini OP. Culicidologia médica: identifcaçäo, biologia e epidemiologia, vol. 2. EdUSP: São Paulo; 2002.
AMBDATA. Dados Climáticos. 2020. http://www.dpi.inpe.br/Ambdata/dados_climaticos.php. Accessed 25 Feb 2020.
Superintendência de Controle de Endemias. Manual de Vigilância Entomológica de Aedes aegypti. São Paulo: Superintendência de Controle de Endemias, Secretaria de Estado da Saúde, Governo do Estado de São Paulo. 1997.
Ministry of Health of Brazil. Diagnóstico Rápido nos Municípios para Vigilância Entomológica do Aedes aegypti no Brasil—LIRAa. Metodologia para avaliação dos índices de Breteau e Predial. 2005. https://bvsms.saude.gov.br/bvs/publicacoes/diagnostico_rapido_municipios_aedes.pdf. Accessed 06 Sep 2021.
Zuur AF, Ieno EN, Saveliev AA. Spatial, temporal and spatial–temporal ecological data analysis with R-INLA. St. Clair Wynd, Newburgh: Highland Statistics Ltd; 2017.
Cressie N, Lahiri SN. The asymptotic distribution of REML estimators. J Multiv Anal. 1993;45:217–33.
Article
Google Scholar
Blangiardo M, Cameletti M. Spatial and spatio-temporal Bayesian models with R-INLA. Hoboken: Wiley; 2015.
Book
Google Scholar
Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Method). 2011;73:423–98.
Article
Google Scholar
Martino S, Rue H. Implementing approximate Bayesian inference using integrated nested laplace approximation: a manual for the INLA program. Trondheim: Department of Mathematical Sciences, NTNU; 2009.
Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH. Penalising model component complexity: a principled, practical approach to constructing priors. Stat Sci. 2017;32(1):1-28. https://doi.org/10.1214/16-STS576.