Corning S. Equine cyathostomins: a review of biology, clinical significance and therapy. Parasit Vectors. 2009;2:S1. https://doi.org/10.1186/1756-3305-2-S2-S1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyons ET, Drudge JH, Tolliver SC. Larval cyathostomiasis. Vet Clin North Am Equine Pract. 2000;16:501–13. https://doi.org/10.1016/s0749-0739(17)30092-5.
Article
CAS
PubMed
Google Scholar
Tamzali Y. Chronic weight loss syndrome in the horse: a 60 case retrospective study. Equine Vet Educ. 2006;18:289–96. https://doi.org/10.1111/j.2042-3292.2006.tb00465.x.
Article
Google Scholar
Traversa D, von Samson-Himmelstjerna G, Demeler J, Milillo P, Schürmann S, Barnes H, et al. Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany. Parasit Vectors. 2009;2:S2. https://doi.org/10.1186/1756-3305-2-s2-s2.
Article
PubMed
PubMed Central
Google Scholar
Tzelos T, Matthews J. Anthelmintic resistance in equine helminths and mitigating its effects. In Pract. 2016;38:489–99. https://doi.org/10.1136/inp.i5287.
Article
Google Scholar
Stratford CH, McGorum BC, Pickles KJ, Matthews JB. An update on cyathostomins: anthelmintic resistance and diagnostic tools. Equine Vet J Suppl. 2011;39:133–9. https://doi.org/10.1111/j.2042-3306.2011.00397.x.
Article
Google Scholar
Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre A, et al. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 2006;136:167–85. https://doi.org/10.1016/j.vetpar.2005.11.019.
Article
CAS
PubMed
Google Scholar
Epe C, Kaminsky R. New advancement in anthelmintic drugs in veterinary medicine. Trends Parasitol. 2013;29:129–34. https://doi.org/10.1016/j.pt.2013.01.001.
Article
CAS
PubMed
Google Scholar
Kuzmina TA, Dzeverin I, Kharchenko VA. Strongylids in domestic horses: Influence of horse age, breed and deworming programs on the strongyle parasite community. Vet Parasitol. 2016;227:56–63. https://doi.org/10.1016/j.vetpar.2016.07.024.
Article
PubMed
Google Scholar
Rendle D, Austin DC, Bowen PM, Cameron I, Furtado T, Hodgkinson PJ, et al. Equine de-worming: a consensus on current best practice. UK-Vet Equine. 2019;3:1–14. https://doi.org/10.12968/ukve.2019.3.S.3.
Article
Google Scholar
Nielsen MK, Pfister K, von Samson-Himmelstjerna G. Selective therapy in equine parasite control–application and limitations. Vet Parasitol. 2014;202:95–103. https://doi.org/10.1016/j.vetpar.2014.03.020.
Article
CAS
PubMed
Google Scholar
Schneider S, Pfister K, Becher AM, Scheuerle MC. Strongyle infections and parasitic control strategies in German horses—a risk assessment. BMC Vet Res. 2014;10:262. https://doi.org/10.1186/s12917-014-0262-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan RM, Nielsen MK. An evidence-based approach to equine parasite control: it ain’t the 60s anymore. Equine Vet Educ. 2010;22:306–16. https://doi.org/10.1111/j.2042-3292.2010.00084.x.
Article
Google Scholar
Rehbein S, Lindner T, Visser M, Winter R. Evaluation of a double centrifugation technique for the detection of Anoplocephala eggs in horse faeces. J Helminthol. 2011;85:409–14. https://doi.org/10.1017/s0022149x10000751.
Article
CAS
PubMed
Google Scholar
Scare JA, Slusarewicz P, Noel ML, Wielgus KM, Nielsen MK. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods. Vet Parasitol. 2017;247:85–92. https://doi.org/10.1016/j.vetpar.2017.10.005.
Article
CAS
PubMed
Google Scholar
Ballweber LR, Beugnet F, Marchiondo AA, Payne PA. American Association of Veterinary Parasitologists’ review of veterinary fecal flotation methods and factors influencing their accuracy and use–is there really one best technique? Vet Parasitol. 2014;204:73–80. https://doi.org/10.1016/j.vetpar.2014.05.009.
Article
CAS
PubMed
Google Scholar
Hinney B, Wirtherle NC, Kyule M, Miethe N, Zessin K-H, Clausen P-H. Prevalence of helminths in horses in the state of Brandenburg, Germany. Parasitol Res. 2011;108:1083. https://doi.org/10.1007/s00436-011-2362-z.
Article
PubMed
Google Scholar
Lester HE, Matthews JB. Faecal worm egg count analysis for targeting anthelmintic treatment in horses: points to consider. Equine Vet J. 2014;46:139–45. https://doi.org/10.1111/evj.12199.
Article
CAS
PubMed
Google Scholar
Tzelos T, Morgan ER, Easton S, Hodgkinson JE, Matthews JB. A survey of the level of horse owner uptake of evidence-based anthelmintic treatment protocols for equine helminth control in the UK. Vet Parasitol. 2019;274: 108926. https://doi.org/10.1016/j.vetpar.2019.108926.
Article
CAS
PubMed
Google Scholar
Matthews JB. Anthelmintic resistance in equine nematodes. Int J Parasitol Drugs Drug Resist. 2014;4:310–5. https://doi.org/10.1016/j.ijpddr.2014.10.003.
Article
PubMed
PubMed Central
Google Scholar
Matthews JB. An update on cyathostomins: Anthelmintic resistance and worm control. Equine Vet Educ. 2008;20:552–60. https://doi.org/10.2746/095777308X363912.
Article
Google Scholar
von Samson-Himmelstjerna G. Anthelmintic resistance in equine parasites—detection, potential clinical relevance and implications for control. Vet Parasitol. 2012;185:2–8. https://doi.org/10.1016/j.vetpar.2011.10.010.
Article
CAS
Google Scholar
Vidyashankar AN, Hanlon BM, Kaplan RM. Statistical and biological considerations in evaluating drug efficacy in equine strongyle parasites using fecal egg count data. Vet Parasitol. 2012;185:45–56. https://doi.org/10.1016/j.vetpar.2011.10.011.
Article
CAS
PubMed
Google Scholar
Kaplan RM. Anthelmintic resistance in nematodes of horses. Vet Res. 2002;33:491–507. https://doi.org/10.1051/vetres:2002035.
Article
PubMed
Google Scholar
Raza A, Qamar AG, Hayat K, Ashraf S, Williams AR. Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology. 2019;146:425–37. https://doi.org/10.1017/S0031182018001786.
Article
CAS
PubMed
Google Scholar
Dauparaitė E, Kupčinskas T, von Samson-Himmelstjerna G, Petkevičius S. Anthelmintic resistance of horse strongyle nematodes to ivermectin and pyrantel in Lithuania. Acta Vet Scand. 2021;63:5. https://doi.org/10.1186/s13028-021-00569-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker A-C, Kraemer A, Epe C, Strube C. Sensitivity and efficiency of selected coproscopical methods—sedimentation, combined zinc sulfate sedimentation-flotation, and McMaster method. Parasitol Res. 2016;115:2581–7. https://doi.org/10.1007/s00436-016-5003-8.
Article
PubMed
Google Scholar
Raue K, Heuer L, Böhm C, Wolken S, Epe C, Strube C. 10-year parasitological examination results (2003 to 2012) of faecal samples from horses, ruminants, pigs, dogs, cats, rabbits and hedgehogs. Parasitol Res. 2017;116:3315–30. https://doi.org/10.1007/s00436-017-5646-0.
Article
PubMed
Google Scholar
Cringoli G, Rinaldi L, Maurelli MP, Utzinger J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat Protoc. 2010;5:503–15. https://doi.org/10.1038/nprot.2009.235.
Article
CAS
PubMed
Google Scholar
Vadlejch J, Petrtýl M, Zaichenko I, Čadková Z, Jankovská I, Langrová I, et al. Which McMaster egg counting technique is the most reliable? Parasitol Res. 2011;109:1387–94. https://doi.org/10.1007/s00436-011-2385-5.
Article
PubMed
Google Scholar
Nielsen MK. What makes a good fecal egg count technique? Vet Parasitol. 2021;296: 109509. https://doi.org/10.1016/j.vetpar.2021.109509.
Article
PubMed
Google Scholar
Noel ML, Scare JA, Bellaw JL, Nielsen MK. Accuracy and precision of Mini-FLOTAC and McMaster techniques for determining equine strongyle egg counts. J Equine Vet Sci. 2017;48:182-7.e1. https://doi.org/10.1016/j.jevs.2016.09.006.
Article
Google Scholar
Cringoli G. FLOTAC, a novel apparatus for a multivalent faecal egg count technique. Parassitologia. 2006;48:381–4.
CAS
PubMed
Google Scholar
Godber OF, Phythian CJ, Bosco A, Ianniello D, Coles G, Rinaldi L, et al. A comparison of the FECPAK and Mini-FLOTAC faecal egg counting techniques. Vet Parasitol. 2015;207:342–5. https://doi.org/10.1016/j.vetpar.2014.12.029.
Article
PubMed
Google Scholar
Nápravníková J, Petrtýl M, Stupka R, Vadlejch J. Reliability of three common fecal egg counting techniques for detecting strongylid and ascarid infections in horses. Vet Parasitol. 2019;272:53–7. https://doi.org/10.1016/j.vetpar.2019.07.001.
Article
PubMed
Google Scholar
Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. 2017;12:1723–32. https://doi.org/10.1038/nprot.2017.067.
Article
CAS
PubMed
Google Scholar
Went HA, Scare JA, Steuer AE, Nielsen MK. Effects of homogenizing methods on accuracy and precision of equine strongylid egg counts. Vet Parasitol. 2018;261:91–5. https://doi.org/10.1016/j.vetpar.2018.09.001.
Article
CAS
PubMed
Google Scholar
Cain JL, Slusarewicz P, Rutledge MH, McVey MR, Wielgus KM, Zynda HM, et al. Diagnostic performance of McMaster, Wisconsin, and automated egg counting techniques for enumeration of equine strongyle eggs in fecal samples. Vet Parasitol. 2020;284:109199. https://doi.org/10.1016/j.vetpar.2020.109199.
Article
PubMed
Google Scholar
Tyson F, Dalesman S, Brophy PM, Morphew RM. Novel equine faecal egg diagnostics: validation of the FECPAKG2. Animals (Basel). 2020; 10(8):1254. https://doi.org/10.3390/ani10081254.
Rashid MH, Stevenson MA, Waenga S, Mirams G, Campbell AJD, Vaughan JL, et al. Comparison of McMaster and FECPAK(G2) methods for counting nematode eggs in the faeces of alpacas. Parasit Vectors. 2018;11:278. https://doi.org/10.1186/s13071-018-2861-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurgenschellert L, Krücken J, Austin CJ, Lightbody KL, Bousquet E, von Samson-Himmelstjerna G. Investigations on the occurrence of tapeworm infections in German horse populations with comparison of different antibody detection methods based on saliva and serum samples. Parasit Vectors. 2020. https://doi.org/10.1186/s13071-020-04318-5.
Article
PubMed
PubMed Central
Google Scholar
Barda B, Cajal P, Villagran E, Cimino R, Juarez M, Krolewiecki A, et al. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit Vectors. 2014;7:271. https://doi.org/10.1186/1756-3305-7-271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levecke B, Cools P, Albonico M, Ame S, Angebault C, Ayana M, et al. Identifying thresholds for classifying moderate-to-heavy soil-transmitted helminth intensity infections for FECPAKG2, McMaster, Mini-FLOTAC and qPCR. PLoS Negl Trop Dis. 2020;14:e0008296. https://doi.org/10.1371/journal.pntd.0008296.
Article
CAS
PubMed
PubMed Central
Google Scholar
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276–82.
Article
Google Scholar
Buono F, Pacifico L, Piantedosi D, Castaldo E, Libralato G, Veneziano V. Comparison of three methods for the diagnosis of Oxyuris equi infection in horses. Equine Vet J. 2021;53:49. https://doi.org/10.1111/evj.69_13495.
Article
Google Scholar
Levecke B, Anderson RM, Berkvens D, Charlier J, Devleesschauwer B, Speybroeck N, et al. Mathematical inference on helminth egg counts in stool and its applications in mass drug administration programmes to control soil-transmitted helminthiasis in public health. In: Anderson RM, Basáñez MG, et al., editors. Advances in parasitology, vol. 87. Cambridge: Academic Press; 2015. p. 193–247.
Torgerson PR, Paul M, Furrer R. Evaluating faecal egg count reduction using a specifically designed package “eggCounts” in R and a user friendly web interface. Int J Parasitol. 2014;44:299–303. https://doi.org/10.1016/j.ijpara.2014.01.005.
Article
PubMed
Google Scholar
Nielsen MK, Olsen SN, Lyons ET, Monrad J, Thamsborg SM. Real-time PCR evaluation of Strongylus vulgaris in horses on farms in Denmark and Central Kentucky. Vet Parasitol. 2012;190:461–6. https://doi.org/10.1016/j.vetpar.2012.07.018.
Article
CAS
PubMed
Google Scholar
Nielsen MK, Vidyashankar AN, Olsen SN, Monrad J, Thamsborg SM. Strongylus vulgaris associated with usage of selective therapy on Danish horse farms—Is it reemerging? Vet Parasitol. 2012;189:260–6. https://doi.org/10.1016/j.vetpar.2012.04.039.
Article
CAS
PubMed
Google Scholar
Nielsen MK, Monrad J, Olsen SN. Prescription-only anthelmintics—a questionnaire survey of strategies for surveillance and control of equine strongyles in Denmark. Vet Parasitol. 2006;135:47–55. https://doi.org/10.1016/j.vetpar.2005.10.020.
Article
CAS
PubMed
Google Scholar
Becher AM, van Doorn DC, Pfister K, Kaplan RM, Reist M, Nielsen MK. Equine parasite control and the role of national legislation—a multinational questionnaire survey. Vet Parasitol. 2018;259:6–12. https://doi.org/10.1016/j.vetpar.2018.07.001.
Article
CAS
PubMed
Google Scholar
Fritzen B, Rohn K, Schneider T, von Samson-Himmelstjerna G. Endoparasite control management on horse farms—lessons from worm prevalence and questionnaire data. Equine Vet J. 2010;42:79–83. https://doi.org/10.2746/042516409X471485.
Article
CAS
PubMed
Google Scholar
Lloyd S, Smith J, Connan RM, Hatcher MA, Hedges TR, Humphrey DJ, et al. Parasite control methods used by horse owners: factors predisposing to the development of anthelmintic resistance in nematodes. Vet Rec. 2000;146:487–92. https://doi.org/10.1136/vr.146.17.487.
Article
CAS
PubMed
Google Scholar
Pillai MR, Mihi B, Ishiwata K, Nakamura K, Sakuragi N, Finkelstein DB, et al. Myc-induced nuclear antigen constrains a latent intestinal epithelial cell-intrinsic anthelmintic pathway. PLoS ONE. 2019;14:e0211244. https://doi.org/10.1371/journal.pone.0211244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen MK, Baptiste KE, Tolliver SC, Collins SS, Lyons ET. Analysis of multiyear studies in horses in Kentucky to ascertain whether counts of eggs and larvae per gram of feces are reliable indicators of numbers of strongyles and ascarids present. Vet Parasitol. 2010;174:77–84. https://doi.org/10.1016/j.vetpar.2010.08.007.
Article
CAS
PubMed
Google Scholar
Cain JL, Peters KT, Suri P, Roher A, Rutledge MH, Nielsen MK. The effect of analyst training on fecal egg counting variability. Parasitol Res. 2021;120:1363–70. https://doi.org/10.1007/s00436-021-07074-2.
Article
PubMed
Google Scholar
Nielsen MK. Evidence-based considerations for control of Parascaris spp. infections in horses. Equine Vet Educ. 2016;28:224–31. https://doi.org/10.1111/eve.12536.
Article
Google Scholar
Fabiani JV, Lyons ET, Nielsen MK. Dynamics of Parascaris and Strongylus spp. parasites in untreated juvenile horses. Vet Parasitol. 2016;230:62–6. https://doi.org/10.1016/j.vetpar.2016.11.002.
Article
CAS
PubMed
Google Scholar
Köhler M. Parasitological, clinical and serological examinations of the progress of Parascaris spp. infections in foals. Berlin: Freien Universität Berlin; 2016. p. 193.
Google Scholar
Levecke B, Rinaldi L, Charlier J, Maurelli MP, Morgoglione ME, Vercruysse J, et al. Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter? Parasitol Res. 2011;109:953–7. https://doi.org/10.1007/s00436-011-2338-z.
Article
PubMed
Google Scholar
Krücken J, Fraundorfer K, Mugisha JC, Ramünke S, Sifft KC, Geus D, et al. Reduced efficacy of albendazole against Ascaris lumbricoides in Rwandan schoolchildren. Int J Parasitol Drugs Drug Resist. 2017;7:262–71. https://doi.org/10.1016/j.ijpddr.2017.06.001.
Article
PubMed
PubMed Central
Google Scholar
Bosco A, Maurelli MP, Ianniello D, Morgoglione ME, Amadesi A, Coles GC, et al. The recovery of added nematode eggs from horse and sheep faeces by three methods. BMC Vet Res. 2018;14:7. https://doi.org/10.1186/s12917-017-1326-7.
Article
PubMed
PubMed Central
Google Scholar
Untersweg F, Ferner V, Wiedermann S, Göller M, Hörl-Rannegger M, Kaiser W, et al. Multispecific resistance of sheep trichostrongylids in Austria. Parasite. 2021;28:50. https://doi.org/10.1051/parasite/2021048.
Article
PubMed
PubMed Central
Google Scholar
Bosco A, Kießler J, Amadesi A, Varady M, Hinney B, Ianniello D, et al. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasit Vectors. 2020;13:457. https://doi.org/10.1186/s13071-020-04329-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Shaughnessy J, Drought Y, Lynch J, Denny M, Hurley C, Byrne W, et al. Ivermectin treatment failure on four Irish dairy farms. Ir Vet J. 2019;72:4. https://doi.org/10.1186/s13620-019-0142-8.
Article
PubMed
PubMed Central
Google Scholar
Zanet S, Battisti E, Labate F, Oberto F, Ferroglio E. Reduced efficacy of fenbendazole and pyrantel pamoate treatments against intestinal nematodes of stud and performance horses. Vet Sci. 2021. https://doi.org/10.3390/vetsci8030042.
Article
PubMed
PubMed Central
Google Scholar
Dias de Castro LL, Abrahão CLH, Buzatti A, Molento MB, Bastianetto E, Rodrigues DS, et al. Comparison of McMaster and Mini-FLOTAC fecal egg counting techniques in cattle and horses. Vet Parasitol Reg Stud Rep. 2017;10:132–5. https://doi.org/10.1016/j.vprsr.2017.10.003.
Article
Google Scholar
Paras KL, George MM, Vidyashankar AN, Kaplan RM. Comparison of fecal egg counting methods in four livestock species. Vet Parasitol. 2018;257:21–7. https://doi.org/10.1016/j.vetpar.2018.05.015.
Article
PubMed
Google Scholar
Cringoli G, Amadesi A, Maurelli MP, Celano B, Piantadosi G, Bosco A, et al. The Kubic FLOTAC microscope (KFM): a new compact digital microscope for helminth egg counts. Parasitology. 2021;148:427–34. https://doi.org/10.1017/S003118202000219X.
Article
CAS
PubMed
Google Scholar
Slusarewicz P, Pagano S, Mills C, Popa G, Chow KM, Mendenhall M, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46:485–93. https://doi.org/10.1016/j.ijpara.2016.02.004.
Article
PubMed
Google Scholar
Elghryani N, Crispell J, Ebrahimi R, Krivoruchko M, Lobaskin V, McOwan T, et al. Preliminary evaluation of a novel, fully automated, Telenostic device for rapid field-diagnosis of cattle parasites. Parasitology. 2020;147:1249–53. https://doi.org/10.1017/S0031182020001031.
Article
CAS
PubMed
Google Scholar
Saeed MA, Jabbar A. “Smart Diagnosis” of parasitic diseases by use of smartphones. J Clin Microbiol. 2018;6: e01469-17. https://doi.org/10.1128/jcm.01469-17.
Ghazali KH, Alsameraai RSH, Mohamed Z. Automated system for diagnosis intestinal parasites by computerized image analysis. Mod Appl Sci. 2013;7:98. https://doi.org/10.5539/mas.v7n5p98.
Dogantekin E, Yilmaz M, Dogantekin A, Avci E, Sengur A. A robust technique based on invariant moments—ANFIS for recognition of human parasite eggs in microscopic images. Expert Syst Appl. 2008;35:728–38. https://doi.org/10.1016/j.eswa.2007.07.020.
Article
Google Scholar
Castañón CAB, Fraga JS, Fernandez S, Gruber A, da Costa L. Biological shape characterization for automatic image recognition and diagnosis of protozoan parasites of the genus Eimeria. Pattern Recognit. 2007;40:1899–910. https://doi.org/10.1016/j.patcog.2006.12.006.
Article
Google Scholar
Li Y, Zheng R, Wu Y, Chu K, Xu Q, Sun M, et al. A low-cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning. J Biophotonics. 2019;12:e201800410. https://doi.org/10.1002/jbio.201800410.
Article
CAS
PubMed
Google Scholar
Suzuki CT, Gomes JF, Falcão AX, Papa JP, Hoshino-Shimizu S. Automatic segmentation and classification of human intestinal parasites from microscopy images. IEEE Trans Biomed Eng. 2013;60:803–12. https://doi.org/10.1109/tbme.2012.2187204.
Article
PubMed
Google Scholar
Mes TH, Eysker M, Ploeger HW. A simple, robust and semi-automated parasite egg isolation protocol. Nat Protoc. 2007;2:486–9. https://doi.org/10.1038/nprot.2007.56.
Article
CAS
PubMed
Google Scholar
Yang YS, Park DK, Kim HC, Choi MH, Chai JY. Automatic identification of human helminth eggs on microscopic fecal specimens using digital image processing and an artificial neural network. IEEE Trans Biomed Eng. 2001;48:718–30. https://doi.org/10.1109/10.923789.
Article
CAS
PubMed
Google Scholar