Hamer DH. Dengue-perils and prevention. N Engl J Med. 2021;384:2252–3.
Article
PubMed
Google Scholar
Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet. 2019;393:350–63.
Article
PubMed
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dos ST, Martin J, Castellanos LG, Espinal MA. Dengue in the Americas: Honduras’ worst outbreak. Lancet. 2019;394:2149.
Google Scholar
Wilder-Smith A, Rupali P. Estimating the dengue burden in India. Lancet Glob Health. 2019;7:e988–9.
Article
PubMed
Google Scholar
Cousins S. Dengue rises in Bangladesh. Lancet Infect Dis. 2019;19:138.
Article
PubMed
Google Scholar
The Lancet. 2020: a crucial year for neglected tropical diseases. Lancet. 2019;394:2126.
PubMed
Google Scholar
Chen B, Liu Q. Dengue fever in China. Lancet. 2015;385:1621–2.
Article
PubMed
Google Scholar
Zhao H, Zhang FC, Zhu Q, Wang J, Hong WX, Zhao LZ, et al. Epidemiological and virological characterizations of the 2014 dengue outbreak in Guangzhou, China. PLoS ONE. 2016;11:e156548.
Google Scholar
Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers. 2016;2:16055.
Article
PubMed
Google Scholar
Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, et al. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in mainland China. Sci Total Environ. 2019;664:203–14.
Article
CAS
PubMed
Google Scholar
Franklinos L, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis. 2019;19:e302–12.
Article
PubMed
Google Scholar
Friedrich MJ. Global temperature affects dengue. JAMA. 2018;320:227.
PubMed
Google Scholar
Colon-Gonzalez FJ, Harris I, Osborn TJ, Steiner SBC, Peres CA, Hunter PR, et al. Limiting global-mean temperature increase to 1.5–2℃ could reduce the incidence and spatial spread of dengue fever in Latin America. Proc Natl Acad Sci USA. 2018;115:6243–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrington LB, Armijos MV, Lambrechts L, Scott TW. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013;7:e2190.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Zhang Z, Lai Z, Zhou T, Jia Z, Gu J, et al. Temperature increase enhances Aedes albopictus competence to transmit dengue virus. Front Microbiol. 2017;8:2337.
Article
PubMed
PubMed Central
Google Scholar
Franz AW, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7:3741–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, et al. Mosquito innate immunity. Insects. 2018;9:95.
Article
CAS
PubMed Central
Google Scholar
Ferreira PG, Tesla B, Horacio E, Nahum LA, Brindley MA, de Oliveira MT, et al. Temperature dramatically shapes mosquito gene expression with consequences for mosquito-Zika virus interactions. Front Microbiol. 2020;11:901.
Article
PubMed
PubMed Central
Google Scholar
Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016;5:85–6.
Article
PubMed
PubMed Central
Google Scholar
Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:545–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015;33:243–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
Article
CAS
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu L, Stige LC, Chan KS, Zhou J, Yang J, Sang S, et al. Climate variation drives dengue dynamics. Proc Natl Acad Sci USA. 2017;114:113–8.
Article
CAS
PubMed
Google Scholar
Huber JH, Childs ML, Caldwell JM, Mordecai EA. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Negl Trop Dis. 2018;12:e6451.
Article
Google Scholar
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science. 2003;302:249–55.
Article
CAS
PubMed
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:e17.
Article
Google Scholar
Jia R, Zhao H, Jia M. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA. Gene. 2020;750:144757.
Article
CAS
PubMed
Google Scholar
Feng X, Zhu L, Qin Z, Mo X, Hao Y, Jiang Y, et al. Temporal transcriptome change of Oncomelania hupensis revealed by Schistosoma japonicum invasion. Cell Biosci. 2020;10:58.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Sharkawy I, Liang D, Xu K. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot. 2015;66:7359–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Xu Y, Wang X, Gu J, Yan G, Chen XG. Antiviral systems in vector mosquitoes. Dev Comp Immunol. 2018;83:34–43.
Article
CAS
PubMed
Google Scholar
Wimalasiri-Yapa B, Barrero RA, Stassen L, Hafner LM, McGraw EA, Pyke AT, et al. Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biol. 2021;11:200246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas S, Verma J, Woolfit M, O’Neill SL. Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. Plos Pathog. 2018;14:e1006879.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh A, Desai A, Ravi V, Narayanappa G, Tyagi BK. Chikungunya virus interacts with heat shock cognate 70 protein to facilitate its entry into mosquito cell line. Intervirology. 2017;60:247–62.
Article
CAS
PubMed
Google Scholar
Vega-Almeida TO, Salas-Benito M, De Nova-Ocampo MA, Del AR, Salas-Benito JS. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol. 2013;158:1189–207.
Article
CAS
PubMed
Google Scholar
Denis CL, Chen J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog Nucleic Acid Res Mol Biol. 2003;73:221–50.
Article
CAS
PubMed
Google Scholar
Liu J, Yang L, Liu F, Li H, Tang W, Tong X, et al. CNOT2 facilitates dengue virus infection via negatively modulating IFN-independent non-canonical JAK/STAT pathway. Biochem Biophys Res Commun. 2019;515:403–9.
Article
CAS
PubMed
Google Scholar
Cheng G, Liu Y, Wang P, Xiao X. Mosquito defense strategies against viral infection. Trends Parasitol. 2016;32:177–86.
Article
PubMed
Google Scholar
Wei Y, Wang J, Wei YH, Song Z, Hu K, Chen Y, et al. Vector competence for DENV-2 among Aedes albopictus (Diptera: Culicidae) populations in China. Front Cell Infect Microbiol. 2021;11:649975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti Toll pathway controls dengue virus infection. PloS Pathog. 2008;4:e1000098.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sasaki T, Kuwata R, Hoshino K, Isawa H, Sawabe K, Kobayashi M. Argonaute 2 suppresses Japanese encephalitis virus infection in Aedes aegypti. Jpn J Infect Dis. 2017;70:38–44.
Article
CAS
PubMed
Google Scholar