Ibizan Hound Dog Breed Information. American Kennel Club. https://www.akc.org/dog-breeds/ibizan-hound/. Accessed on 30 May 2022.
Ridgway M. Hunting dogs. Vet Clin North Am Small Anim Pract. 2021;51:877–90.
Article
PubMed
Google Scholar
Leontides LS, Saridomichelakis MN, Billinis C, Kontos V, Koutinas AF, Galatos AD, et al. A cross-sectional study of Leishmania spp. infection in clinically healthy dogs with polymerase chain reaction and serology in Greece. Vet Parasitol. 2002;109:19–27.
Article
PubMed
Google Scholar
Mohebali M, Malmasi A, Khodabakhsh M, Zarei Z, Akhoundi B, Hajjaran H, et al. Feline leishmaniosis due to Leishmania infantum in Northwest Iran: the role of cats in endemic areas of visceral leishmaniosis. Vet Parasitol Reg Stud Rep. 2017;9:13–6.
Google Scholar
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671.
Article
CAS
PubMed
PubMed Central
Google Scholar
González E, Molina R, Iriso A, Ruiz S, Aldea I, Tello A, et al. Opportunistic feeding behaviour and Leishmania infantum detection in Phlebotomus perniciosus females collected in the human leishmaniasis focus of Madrid, Spain (2012–2018). PLoS Negl Trop Dis. 2021;15:e0009240.
Article
PubMed
PubMed Central
Google Scholar
Gálvez R, Montoya A, Cruz I, Fernández C, Martín O, Checa R, et al. Latest trends in Leishmania infantum infection in dogs in Spain, part I: mapped seroprevalence and sand fly distributions. Parasit Vectors. 2020;13:204.
Article
PubMed
PubMed Central
Google Scholar
Edo M, Marín-García PJ, Llobat L. Is the prevalence of Leishmania infantum linked to breeds in dogs? Characterization of seropositive dogs in Ibiza. Animals (Basel). 2021;11:2579.
Article
PubMed
Google Scholar
Burnham AC, Ordeix L, Alcover MM, Martínez-Orellana P, Montserrat-Sangrà S, Willen L, et al. Exploring the relationship between susceptibility to canine leishmaniosis and anti-Phlebotomus perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in Mallorca. Spain Parasit Vectors. 2020;13:129.
Article
CAS
PubMed
Google Scholar
Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703.
Article
PubMed
PubMed Central
Google Scholar
Solano-Gallego L, Llull J, Ramos G, Riera C, Arboix M, Alberola J, et al. The Ibizian hound presents a predominantly cellular immune response against natural Leishmania infection. Vet Parasitol. 2000;90:37–45.
Article
CAS
PubMed
Google Scholar
Sanchez-Robert E, Altet L, Utzet-Sadurni M, Giger U, Sanchez A, Francino O. Slc11a1 (formerly Nramp1) and susceptibility to canine visceral leishmaniasis. Vet Res. 2008;39:36.
Article
PubMed
Google Scholar
da Silva LG, Costa-Júnior CRL, Figueiredo-Júnior CAS, Leal-Balbino TC, Crovella S, Otranto D, et al. Canine β-defensin-1 (CBD1) gene as a possible marker for Leishmania infantum infection in dogs. Parasit Vectors. 2017;10:199.
Article
PubMed
PubMed Central
Google Scholar
Batista LFS, Utsunomiya YT, Silva TBF, Dias RA, Tomokane TY, Pacheco AD, et al. Genome-wide association study of cell-mediated response in dogs naturally infected by Leishmania infantum. Infect Immun. 2016;84:3629–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista LFS, Torrecilha RBP, Silva RB, Utsunomiya YT, Silva TBF, Tomokane TY, et al. Chromosomal segments may explain the antibody response cooperation for canine leishmaniasis pathogenesis. Vet Parasitol. 2020;288:109276.
Article
CAS
PubMed
Google Scholar
Batista LFS, Utsunomiya YT, Silva TBF, Carneiro MM, Paiva JSF, Silva RB, et al. Canine leishmaniasis: genome-wide analysis and antibody response to Lutzomyia longipalpis saliva. PLoS ONE. 2018;13:e0197215.
Article
PubMed
PubMed Central
Google Scholar
Soutter F, Solano-Gallego L, Attipa C, Gradoni L, Fiorentino E, Foglia Manzillo V, et al. An investigation of polymorphisms in innate and adaptive immune response genes in canine leishmaniosis. Vet Parasitol. 2019;269:34–41.
Article
CAS
PubMed
Google Scholar
Utsunomiya YT, Ribeiro ÉS, Quintal APN, Sangalli JR, Gazola VR, Paula HB, et al. Genome-wide scan for visceral leishmaniasis in mixed-breed dogs identifies candidate genes involved in T helper cells and macrophage signaling. PLoS ONE. 2015;10:e0136749.
Article
PubMed
PubMed Central
Google Scholar
Altet L, Francino O, Solano-Gallego L, Renier C, Sánchez A. Mapping and sequencing of the canine NRAMP1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect Immun. 2002;70:2763–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Orellana P, Marí-Martorell D, Montserrat-Sangrà S, Ordeix L, Baneth G, Solano-Gallego L. Leishmania infantum-specific IFN-γ production in stimulated blood from dogs with clinical leishmaniosis at diagnosis and during treatment. Vet Parasitol. 2017;248:39–47.
Article
PubMed
Google Scholar
Marín-García PJ, Llobat L. Canine cytokines profile in an endemic region of L. infantum: related factors. Vet Sci. 2022. https://doi.org/10.3390/vetsci9060305.
Article
PubMed
PubMed Central
Google Scholar
Ordeix L, Montserrat-Sangrà S, Martínez-Orellana P, Solano-Gallego L. Toll-Like Receptors 2, 4, and 7, Interferon-gamma, interleukin 10, and programmed death ligand 1 transcripts in leishmanin skin test-positive reactions of Ibizan Hound dogs. J Immunol Res. 2020;2020:9602576.
Article
PubMed
PubMed Central
Google Scholar
Esteve LO. The spectrum of cutaneous manifestations in canine leishmaniosis: insights into diagnosis and immune responses. http://purl.org/dc/dcmitype/Text. Universitat Autonomade Barcelona. 2018
Martínez-Orellana P, González N, Baldassarre A, Álvarez-Fernández A, Ordeix L, Paradies P, et al. Humoral responses and ex vivo IFN-γ production after canine whole blood stimulation with Leishmania infantum antigen or KMP11 recombinant protein. Vet Sci. 2022;9:116.
Article
PubMed
PubMed Central
Google Scholar
Transcript: ENSCAFT00845024391.1 (IFNG-201) - Variants - Canis_lupus_familiaris - Ensembl genome browser 107. http://www.ensembl.org/Canis_lupus_familiaris/Transcript/ProtVariations?db=core;g=ENSCAFG00845013680;r=10:10530421-10535258;t=ENSCAFT00845024391;vdb=variation;vf=10918. Accessed on 13 Jul 2022.
da Silva GAV, Mesquita TG, Souza VC, Junior J, do ES, Gomes de Souza ML, Talhari AC, et al. A Single haplotype of IFNG correlating with low circulating levels of interferon-γ is associated with susceptibility to cutaneous leishmaniasis caused by Leishmania guyanensis. Clin Infect Dis. 2020;71:274–81.
Article
PubMed
Google Scholar
Maia C, Campino L. Biomarkers associated with Leishmania infantum exposure, infection, and disease in dogs. Front Cell Infect Microbiol. 2018;8:302.
Article
PubMed
PubMed Central
Google Scholar
Maia C, Campino L. Cytokine and phenotypic cell profiles of Leishmania infantum infection in the dog. J Trop Med. 2012;2012:541571.
Article
PubMed
Google Scholar
Ordeix L, Montserrat-Sangrà S, Martínez-Orellana P, Baxarias M, Solano-Gallego L. Toll-like receptors 2, 4 and 7, interferon-gamma and interleukin 10, and programmed death ligand 1 transcripts in skin from dogs of different clinical stages of leishmaniosis. Parasit Vectors. 2019;12:575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrillo E, Moreno J. Cytokine profiles in canine visceral leishmaniasis. Vet Immunol Immunopathol. 2009;128:67–70.
Article
CAS
PubMed
Google Scholar
Aslan H, Oliveira F, Meneses C, Castrovinci P, Gomes R, Teixeira C, et al. New insights into the transmissibility of Leishmania infantum from dogs to sand flies: experimental vector-transmission reveals persistent parasite depots at bite sites. J Infect Dis. 2016;213:1752–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Orellana P, Quirola-Amores P, Montserrat-Sangrà S, Ordeix L, Llull J, Álvarez-Fernández A, et al. The inflammatory cytokine effect of Pam3CSK4 TLR2 agonist alone or in combination with Leishmania infantum antigen on ex-vivo whole blood from sick and resistant dogs. Parasit Vectors. 2017;10:123.
Article
PubMed
PubMed Central
Google Scholar
rs22707631 (SNP) - Explore this variant - Canis_lupus_familiaris - Ensembl genome browser 107. http://www.ensembl.org/Canis_lupus_familiaris/Variation/Explore?db=core;g=ENSCAFG00845020168;r=19:17869103-17874712;t=ENSCAFT00845035554;v=rs22707631;vdb=variation;vf=1375817. Accessed on 13 Jul 2022.
de Araujo FJ, da Silva LDO, Mesquita TG, Pinheiro SK, Vital WdS, Chrusciak-Talhari A, et al. Polymorphisms in the TOLLIP gene influence susceptibility to cutaneous leishmaniasis caused by Leishmania guyanensis in the Amazonas State of Brazil. PLoS Negl Trop Dis. 2015. https://doi.org/10.1371/journal.pntd.0003875.
Article
PubMed
PubMed Central
Google Scholar
Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol. 1998;10:259–64.
Article
CAS
PubMed
Google Scholar
Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity. 1998;8:383–90.
Article
CAS
PubMed
Google Scholar
Kumar D, Tiwary P, Chakravarty J, Sundar S. Association of interleukin-18 gene polymorphism with susceptibility to visceral leishmaniasis in endemic area of Bihar, an Indian population. ScientificWorldJournal. 2014;2014:852104.
Article
PubMed
PubMed Central
Google Scholar
Pinelli E, Killick-Kendrick R, Wagenaar J, Bernadina W, del Real G, Ruitenberg J. Cellular and humoral immune responses in dogs experimentally and naturally infected with Leishmania infantum. Infect Immun. 1994;62:229–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chamizo C, Moreno J, Alvar J. Semi-quantitative analysis of cytokine expression in asymptomatic canine leishmaniasis. Vet Immunol Immunopathol. 2005;103:67–75.
Article
CAS
PubMed
Google Scholar
Manna L, Reale S, Viola E, Vitale F, Foglia Manzillo V, Pavone LM, et al. Leishmania DNA load and cytokine expression levels in asymptomatic naturally infected dogs. Vet Parasitol. 2006;142:271–80.
Article
CAS
PubMed
Google Scholar
Carrillo E, Ahmed S, Goldsmith-Pestana K, Nieto J, Osorio Y, Travi B, et al. Immunogenicity of the P-8 amastigote antigen in the experimental model of canine visceral leishmaniasis. Vaccine. 2007;25:1534–43.
Article
CAS
PubMed
Google Scholar
Wardini AB, Pinto-da-Silva LH, Nadaes NR, Nascimento MT, Roatt BM, Reis AB, et al. Neutrophil properties in healthy and Leishmania infantum-naturally infected dogs. Sci Rep. 2019;9:6247.
Article
PubMed
PubMed Central
Google Scholar
Abbehusen MMC, Almeida VDA, Solcà MdS, Pereira LdS, Costa DJ, Gil-Santana L, et al. Clinical and immunopathological findings during long term follow-up in Leishmania infantum experimentally infected dogs. Sci Rep. 2017;7:15914.
Article
PubMed
PubMed Central
Google Scholar
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum natural infection: a whole-transcriptome analysis of the popliteal lymph nodes in dogs. Front Immunol. 2021;12:794627.
Article
CAS
PubMed
Google Scholar
Hajilooi M, Abasi M, Bazmani A, Ahmadi A, Matini M, Solgi G, et al. Evaluation of interleukin-8 -251 t/a polymorphisms in visceral leishmaniasis. J Res Health Sci. 2015;15:59–61.
PubMed
Google Scholar
de Lima VMF, Peiro JR, de Oliveira VR. IL-6 and TNF-alpha production during active canine visceral leishmaniasis. Vet Immunol Immunopathol. 2007;115:189–93.
Article
PubMed
Google Scholar
Martínez-Orellana P, Montserrat-Sangrà S, Quirola-Amores P, González N, Solano-Gallego L. Cytokine effect of TLR3, TLR4, and TLR7 agonists alone or associated with Leishmania infantum antigen on blood from dogs. Biomed Res Int. 2018;2018:5693736.
Article
PubMed
PubMed Central
Google Scholar
Ordeix L, Silva JEDS, Llull J, Quirola P, Montserrat-Sangrà S, Martínez-Orellana P, et al. Histological and immunological description of the leishmanin skin test in Ibizan Hounds. J Comp Pathol. 2018;158:56–65.
Article
CAS
PubMed
Google Scholar
Gajanayaka N, Dong SXM, Ali H, Iqbal S, Mookerjee A, Lawton DA, et al. TLR-4 agonist induces IFN-γ production selectively in proinflammatory human M1 macrophages through the PI3K-mTOR- and JNK-MAPK-activated p70S6K pathway. J Immunol. 2021;207:2310–24.
Article
CAS
PubMed
Google Scholar
Srivastava S, Pandey SP, Jha MK, Chandel HS, Saha B. Leishmania expressed lipophosphoglycan interacts with toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol. 2013;172:403–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yao ZQ, Moorman JP, Xu Y, Ning S. Gene expression profiling identifies IRF4-associated molecular signatures in hematological malignancies. PLoS ONE. 2014;9:e106788.
Article
PubMed
PubMed Central
Google Scholar
Sundararaj S, Casarotto MG. Molecular interactions of IRF4 in B cell development and malignancies. Biophys Rev. 2021;13:1219–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeudy S, Wardrop KE, Alessi A, Dominov JA. Bcl-2 inhibits the innate immune response during early pathogenesis of murine congenital muscular dystrophy. PLoS ONE. 2011;6:e22369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Zeppa JJ, Hancock MA, McCormick JK, Doherty TM, Hendy GN, et al. Staphylococcal superantigens use LAMA2 as a coreceptor to activate T cells. J Immunol. 2018;200:1471–9.
Article
CAS
PubMed
Google Scholar
Wei Z, Du Q, Li P, Liu H, Xia M, Chen Y, et al. Death-associated protein kinase 1 (DAPK1) controls CD8+ T cell activation, trafficking, and antitumor activity. FASEB J. 2021;35:e21138.
Article
CAS
PubMed
Google Scholar
Wei Z, Li P, He R, Liu H, Liu N, Xia Y, et al. DAPK1 (death associated protein kinase 1) mediates mTORC1 activation and antiviral activities in CD8+ T cells. Cell Mol Immunol. 2021;18:138–49.
Article
CAS
PubMed
Google Scholar
Hwang I-Y, Park C, Kehrl JH. Impaired trafficking of Gnai2+/- and Gnai2-/- T lymphocytes: implications for T cell movement within lymph nodes. J Immunol. 2007;179:439–48.
Article
CAS
PubMed
Google Scholar
Han S-B, Moratz C, Huang N-N, Kelsall B, Cho H, Shi C-S, et al. Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity. 2005;22:343–54.
Article
CAS
PubMed
Google Scholar
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a melanoma immunotherapy (response) factor? Mol Cancer. 2020;19:170.
Article
PubMed
PubMed Central
Google Scholar
Arechiga AF, Habib T, He Y, Zhang X, Zhang Z-Y, Funk A, et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J Immunol. 2009;182:3343–7.
Article
CAS
PubMed
Google Scholar
Gjörloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999;29:3845–54.
Article
PubMed
Google Scholar
Ramia E, Chiaravalli AM, Bou Nasser Eddine F, Tedeschi A, Sessa F, Accolla RS, et al. CIITA-related block of HLA class II expression, upregulation of HLA class I, and heterogeneous expression of immune checkpoints in hepatocarcinomas: implications for new therapeutic approaches. Oncoimmunology. 2019;8:1548243.
Article
PubMed
Google Scholar
Adhikari A, Cobb B, Eddington S, Becerra N, Kohli P, Pond A, et al. IFN-γ and CIITA modulate IL-6 expression in skeletal muscle. Cytokine X. 2020;2:100023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brzostek J, Gautam N, Zhao X, Chen EW, Mehta M, Tung DWH, et al. T cell receptor and cytokine signal integration in CD8+ T cells is mediated by the protein Themis. Nat Immunol. 2020;21:186–98.
Article
CAS
PubMed
Google Scholar
Sanchez-Robert E, Altet L, Sanchez A, Francino O. Polymorphism of Slc11a1 (Nramp1) gene and canine leishmaniasis in a case-control study. J Hered. 2005;96:755–8.
Article
CAS
PubMed
Google Scholar
Braliou GG, Kontou PI, Boleti H, Bagos PG. Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: a systematic review and meta-analysis. Parasitol Res. 2019;118:2329–42.
Article
PubMed
Google Scholar
Ejghal R, Hida M, Idrissi ML, Hessni AE, Lemrani M. SLC11A1 polymorphisms and susceptibility to visceral leishmaniasis in Moroccan patients. Acta Trop. 2014;140:130–6.
Article
CAS
PubMed
Google Scholar
Bueno R, Carvalho Neta AV, Xavier MN, Oliveira RG, Diniz SA, Melo MN, et al. cDNA sequencing and expression of Nramp1 (Slc11a1) in dogs phenotypically resistant or susceptible to visceral leishmaniasis. Vet Immunol Immunopathol. 2009;127:332–9.
Article
CAS
PubMed
Google Scholar
Singh N, Gedda MR, Tiwari N, Singh SP, Bajpai S, Singh RK. Solute carrier protein family 11 member 1 (Slc11a1) activation efficiently inhibits Leishmania donovani survival in host macrophages. J Parasit Dis. 2017;41:671–7.
Article
PubMed
Google Scholar
Bourdon M, Santulli P, Doridot L, Jeljeli M, Chêne C, Chouzenoux S, et al. Immune cells and Notch1 signaling appear to drive the epithelial to mesenchymal transition in the development of adenomyosis in mice. Mol Hum Reprod. 2021. https://doi.org/10.1093/molehr/gaab053.
Article
PubMed
Google Scholar
Castro RC, Zambuzi FA, Fontanari C, de Morais FR, Bollela VR, Kunkel SL, et al. NOTCH1 and DLL4 are involved in the human tuberculosis progression and immune response activation. Tuberculosis (Edinb). 2020;124:101980.
Article
CAS
PubMed
Google Scholar
Paauw ND, Lely AT, Joles JA, Franx A, Nikkels PG, Mokry M, et al. H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction. Clin Epigenetics. 2018;10:85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature. 2019;567:525–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu T, Park S-S, Giaimo BD, Hall D, Ferrante F, Ho DM, et al. RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J. 2017;36:3232–49.
Article
CAS
PubMed
PubMed Central
Google Scholar