Liu B, Gao X, Zheng K, Ma J, Jiao Z, Xiao J, et al. The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: an ecological niche modeling approach. Pest Manag Sci. 2020;76:3096–107.
Article
CAS
Google Scholar
Auerswald H, Maquart PO, Chevalier V, Boyer S. Mosquito vector competence for Japanese encephalitis virus. Viruses. 2021;13:1154.
Article
Google Scholar
Aardema ML, vonHoldt BM, Fritz ML, Davis SR. Global evaluation of taxonomic relationships and admixture within the Culex pipiens complex of mosquitoes. Parasit Vectors. 2020;13:8.
Article
CAS
Google Scholar
Rudolf I, Šikutová S, Šebesta O, Mendel J, Malenovský I, Kampen H, et al. Overwintering of Culex modestus and other mosquito species in a reedbed ecosystem, including arbovirus findings. J Am Mosq Control Assoc. 2020;36:257–60.
Article
Google Scholar
Martinet B, Dellicour S, Ghisbain G, Przybyla K, Zambra E, Lecocq T, et al. Global effects of extreme temperatures on wild bumblebees. Conserv Biol. 2021;35:1507–18.
Article
Google Scholar
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, aging and senescence? Biol Rev CambPhilos Soc. 2008;83:339–55.
Article
Google Scholar
Sinclair BJ, Williams CM, Terblanche JS. Variation in thermal performance among insect populations. Physiol Biochem Zool. 2012;85:594–606.
Article
Google Scholar
Pei J, Li C, Ren L, Zong S. Factors influencing cold hardiness during overwintering of Streltzoviella insularis (Lepidoptera: Cossidae). J Econ Entomol. 2020;113:1254–61.
Article
Google Scholar
Kostál V, Tollarová-Borovanská M. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PLoS ONE. 2009;4:e4546.
Article
Google Scholar
Wang B, Hao X, Xu J, Ma Y, Ma L. Transcriptome-based analysis reveals a crucial role of BxGPCR17454 in low temperature response of pinewood nematode (Bursaphelenchus xylophilus). Int J Mol Sci. 2019;20:2898.
Article
CAS
Google Scholar
Chen K, Tang T, Song Q, Wang Z, He K, Liu X, et al. Transcription analysis of the stress and immune response genes to temperature stress in Ostrinia furnacalis. Front Physiol. 2019;10:1289.
Article
Google Scholar
Zhang HP, Liu W, An JQ, Yang P, Guo LH, Li YQ, et al. Transcriptome analyses, and weighted gene coexpression network analysis reveal key pathways and genes involved in the rapid cold resistance of the Chinese white wax scale insect. Arch Insect Biochem Physiol. 2021;107:e21781.
Article
CAS
Google Scholar
Raza MF, Wang Y, Cai Z, Bai S, Yao Z, Awan UA, et al. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 2020;16:e1008441.
Article
Google Scholar
Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H, et al. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly. 2018;12:1–12.
Article
Google Scholar
Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome. 2020;8:38.
Article
CAS
Google Scholar
Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, et al. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. J Exp Biol. 2017;220:4204–12.
Google Scholar
Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc Natl Acad Sci USA. 2019;116:25909–16.
Article
CAS
Google Scholar
Guégan M, Van Tran V, Martin E, Minard G, Tran FH, Fel B, et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environ Microbiol. 2020;22:1193–206.
Article
Google Scholar
Lee JB, Park KE, Lee SA, Jang SH, Eo HJ, Jang HA, et al. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Dev Comp Immunol. 2017;69:12–22.
Article
CAS
Google Scholar
Marra A, Hanson MA, Kondo S, Erkosar B, Lemaitre B. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance. MBio. 2021;12:e0082421.
Article
CAS
Google Scholar
Ma M, Tu C, Luo J, Lu M, Zhang S, Xu L. Metabolic and immunological effects of gut microbiota in leaf beetles at the local and systemic levels. Integr Zool. 2021;16:313–23.
Article
CAS
Google Scholar
Gao H, Bai L, Jiang Y, Huang W, Wang L, Li S, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat Microbiol. 2021;6:806–17.
Article
CAS
Google Scholar
Wang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol. 2018;27:2972–85.
Article
CAS
Google Scholar
Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 2009;9:96.
Article
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25:101-112.e5.
Article
CAS
Google Scholar
Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, et al. A high-quality De novo genome assembly from a single mosquito using PacBio sequencing. Genes. 2019;10:62.
Article
Google Scholar
Martin M, Martin M. Cut adapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–2.
Article
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
Article
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
Article
CAS
Google Scholar
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12:R22.
Article
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.
Article
CAS
Google Scholar
Wei G, Lai Y, Wang G, Chen H, Li F, Wang S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA. 2017;114:5994–9.
Article
CAS
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit Vectors. 2015;8:36.
Article
Google Scholar
Teoh MC, Furusawa G, Veera SG. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol. 2021;203:1891–915.
Article
CAS
Google Scholar
Gaio Ade O, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes Aegypti (diptera: culicidae) (L.). Parasit Vectors. 2011;4:105.
Article
Google Scholar
Liu Z, Han H, Meng F, Jiang Y, Cai J. Dynamic transcriptome profiling exploring cold tolerance in forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). BMC Genomics. 2020;21:92.
Article
CAS
Google Scholar
Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J Exp Biol. 2011;214:4021–9.
Article
Google Scholar
Wojda I. Temperature stress and insect immunity. J Therm Biol. 2017;68:96–103.
Article
CAS
Google Scholar
Chang YW, Zhang XX, Lu MX, Gong WR, Du YZ. Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress. Comp Biochem Physiol Part D Genomics Proteomics. 2020;34:100677.
Article
CAS
Google Scholar
Zhu W, Zhang H, Li X, Meng Q, Shu R, Wang M, et al. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: metabolic regulation and thermal compensation. J Insect Physiol. 2016;85:76–85.
Article
CAS
Google Scholar
Wen X, Wang S, Duman JG, Arifin JF, Juwita V, Goddard WA 3rd, et al. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc Natl Acad Sci USA. 2016;113:6683–8.
Article
CAS
Google Scholar
Dumas P, Morin MD, Boquel S, Moffat CE, Morin PJ. Expression status of heat shock proteins in response to cold, heat, or insecticide exposure in the Colorado potato beetle Leptinotarsa decemlineata. Cell Stress Chaperones. 2019;24:539–47.
Article
CAS
Google Scholar
Wang B, Hao X, Xu J, Wang B, Ma W, Liu X, et al. Cytochrome P450 metabolism mediates low-temperature resistance in pinewood nematode. FEBS Open Bio. 2020;10:1171–9.
Article
CAS
Google Scholar
Tukaj S. Heat shocks protein 70 as a double agent acting inside and outside the cell: insights into autoimmunity. Int J Mol Sci. 2020;21:5298.
Article
CAS
Google Scholar
Robert JA, Bonnett T, Pitt C, Spooner LJ, Fraser J, Yuen MM, et al. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ. 2016;4:e2109.
Article
Google Scholar
Des Marteaux LE, McKinnon AH, Udaka H, Toxopeus J, Sinclair BJ. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics. 2017;18:357.
Article
Google Scholar
Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B. 2021;9:6939–57.
Article
CAS
Google Scholar
Sim C, Denlinger DL. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. J Insect Physiol. 2011;57:628–34.
Article
CAS
Google Scholar
Sinclair BJ, Marshall KE. The many roles of fats in overwintering insects. J Exp Biol. 2018;221:jeb161836.
Article
Google Scholar
Bost A, Franzenburg S, Adair KL, Martinson VG, Loeb G, Douglas AE. How the gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota. Mol Ecol. 2018;27:1848–59.
Article
CAS
Google Scholar
Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. Proc Biol Sci. 2020;287:20201184.
Google Scholar
Sharifuzzaman SM, Abbass A, Tinsley JW, Austin B. Subcellular components of probiotics Kocuria SM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish Shellfish Immunol. 2011;30:347–53.
Article
CAS
Google Scholar