Chagas Disease report. World Health Organization, [http://www.who.int/mediacentre/factsheets/fs340/en/]
Clayton J: Chagas disease: pushing through the pipeline. Nature. 2010, 465 (7301): S12-15. 10.1038/nature09224.
Article
PubMed
Google Scholar
Maya JD, Cassels B, Galanti N, Morello A: Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol. 2007, 146 (4): 601-620. 10.1016/j.cbpa.2006.03.004.
Article
PubMed
Google Scholar
Castro DP, Seabra SH, Garcia ES, de Souza W, Azambuja P: Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol. 2007, 117 (2): 201-207. 10.1016/j.exppara.2007.04.014.
Article
CAS
PubMed
Google Scholar
Azambuja P, Garcia ES, Ratcliffe NA: Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005, 12: 568-572.
Article
Google Scholar
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, Beard CB: Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2008, 119 (1): 94-98. 10.1016/j.exppara.2007.12.020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Azambuja P, Feder D, Garcia ES: Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol. 2004, 107 (1-2): 89-96. 10.1016/j.exppara.2004.04.007.
Article
CAS
PubMed
Google Scholar
Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GP: Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2007, 2: 605-618. 10.2217/17460913.2.6.605.
Article
CAS
PubMed
Google Scholar
Pérez-Tomás R, Viñas M: New insights on the antitumoral properties of prodiginines. Curr Med Chem. 2010, 17 (21): 2222-2231. 10.2174/092986710791331103.
Article
PubMed
Google Scholar
Pérez-Tomás R, Montaner B, Llagostera E, Soto-Cerrato V: The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol. 2003, 66 (8): 1447-1452. 10.1016/S0006-2952(03)00496-9.
Article
PubMed
Google Scholar
Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, ·Travis W, James L, Ginsberg MS, Juergens R, Markus S, Tyson L, Subzwari S, Kris MG, Krug LM: A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010, 66 (6): 1079-1085. 10.1007/s00280-010-1265-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Konno H, Matsuya H, Okamoto M, Sato T, Tanaka Y, Yokoyama K, Kataoka T, Nagai K, Wasserman HH, Ohkuma S: Prodigiosins uncouple mitochondrial and bacterial F-ATPases: evidence for their H+/Cl- symport activity. J Biochem. 1998, 124 (3): 547-556.
Article
CAS
PubMed
Google Scholar
Soto-Cerrato V, Llagostera E, Montaner B, Scheffer GL, Perez-Tomas R: Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol. 2004, 68 (7): 1345-1352. 10.1016/j.bcp.2004.05.056.
Article
CAS
PubMed
Google Scholar
Llagostera E, Soto-Cerrato V, Montaner B, Pérez-Tomás R: Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Ann N Y Acad Sci. 2003, 10: 178-181.
Article
Google Scholar
Francisco R, Pérez-Tomás R, Giménez-Bonafé P, Soto-Cerrato V, Giménez-Xavier P, Ambrosio S: Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur J Pharmacol. 2007, 572 (2-3): 111-119. 10.1016/j.ejphar.2007.06.054.
Article
CAS
PubMed
Google Scholar
Takano-Lee M, Edman JD: Lack of manipulation of Rhodnius prolixus (Hemiptera: Reduviidae) vector competence by Trypanosoma cruzi. J Med Entomol. 2002, 39 (1): 44-51. 10.1603/0022-2585-39.1.44.
Article
PubMed
Google Scholar
Williamson NR, Fineran PC, Leeper FJ, Salmond GP: The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol. 2006, 4 (12): 887-899. 10.1038/nrmicro1531.
Article
CAS
PubMed
Google Scholar
Montaner B, Pérez-Tomás R: The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets. 2003, 3 (1): 57-65. 10.2174/1568009033333772.
Article
CAS
PubMed
Google Scholar
Da Silva Melo P, Durán N, Haun M: Cytotoxicity of prodigiosin and benznidazole on V79 cells. Toxicol Lett. 2000, 116 (3): 237-42. 10.1016/S0378-4274(00)00226-5.
Article
CAS
PubMed
Google Scholar
Zhou Wei, Zhi-Xiong Jin, Yong-Ji Wan: Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens. Appl Microbiol Biotechnol. 2010, 88: 1269-1275. 10.1007/s00253-010-2806-x.
Article
CAS
PubMed
Google Scholar
Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y: Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother. 2002, 46 (4): 1112-1113. 10.1128/AAC.46.4.1112-1113.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Denicola-Seoane A, Rubbo H, Prodanov E, Turrens J: Succinate-dependent metabolism in Trypanosoma cruzi epimastigotes. Mol and Biochem Parasitol. 1992, 54: 43-50. 10.1016/0166-6851(92)90093-Y.
Article
CAS
Google Scholar
Van Hellemond JJ, Opperdoes FR, Tielens AGM: The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans. 2005, 33 (5): 967-971. 10.1042/BST20050967.
Article
CAS
PubMed
Google Scholar
Chaudhuri M, Ott RD, Hill GC: Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 2006, 22 (10): 484-491. 10.1016/j.pt.2006.08.007.
Article
CAS
PubMed
Google Scholar
Opperdoes FR, Michels PA: Complex I of Trypanosomatidae: does it exist?. Trends Parasitol. 2008, 24 (7): 310-317. 10.1016/j.pt.2008.03.013.
Article
CAS
PubMed
Google Scholar
Carranza JC, Kowaltowski AJ, Mendonça MA, de Oliveira TC, Gadelha FR, Zingales B: Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes. J Bioenerg Biomembr. 2009, 41 (3): 299-308. 10.1007/s10863-009-9228-4.
Article
PubMed
Google Scholar
Verner Z, Cermáková P, Skodová I, Kriegová E, Horváth A, Lukes J: Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol. 2011, 175 (2): 196-200. 10.1016/j.molbiopara.2010.11.003.
Article
CAS
PubMed
Google Scholar
Stoppani AO, Docampo R, de Boiso JF, Frasch AC: Effect of inhibitors of electron transport and oxidative phosphorylation on Trypanosoma cruzi respiration and growth. Mol Biochem Parasitol. 1980, 2 (1): 3-21. 10.1016/0166-6851(80)90044-4.
Article
CAS
PubMed
Google Scholar
Carneiro M, Caldas RA: Evidence for three respiratory terminals in Trypanosoma cruzi epimastigotes. Acta Trop. 1982, 39 (1): 41-49.
CAS
PubMed
Google Scholar
Armstrong JS: Mitochondrial membrane permeabilization: the sine qua non for cell death. BioEssays. 2006, 28: 253-260. 10.1002/bies.20370.
Article
CAS
PubMed
Google Scholar
Puskas F, Gergely P, Banki K, Perl A: Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. FASEB J. 2000, 14 (10): 1352-1361. 10.1096/fj.14.10.1352.
Article
CAS
PubMed
Google Scholar
Li PF, Dietz R, von Harsdorf R: p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999, 1 (21): 6027-6036. 18
Article
Google Scholar
Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP: Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. N.FEBS Lett. 2000, 475 (3): 267-72. 10.1016/S0014-5793(00)01681-1.
Article
CAS
Google Scholar
Gergely P, Niland B, Gonchoroff N, Pullmann R, Phillips PE, Perl A: Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J Immunol. 2002, 169 (2): 1092-1101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nagy G, Koncz A, Perl A: T Cell Activation-Induced mitocondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J Immunol. 2003, 171 (10): 5188-5197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ameisen JC: On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 2002, 9 (4): 367-393. 10.1038/sj.cdd.4400950.
Article
CAS
PubMed
Google Scholar
Ameisen JC, Idziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A, Ouaissi A: Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ. 1995, 2 (4): 285-300.
CAS
PubMed
Google Scholar
Arnoult D, Akarid K, Grodert A, Ameisen J: On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ. 2002, 9 (1): 65-81. 10.1038/sj.cdd.4400951.
Article
CAS
PubMed
Google Scholar
Kosec G, Alvarez V, Aguero F: Metacaspases of Trypanosoma cruzi: Posible candidates for programmed cell death mediators. Mol Biochem Parasitol. 2006, 145 (1): 18-28. 10.1016/j.molbiopara.2005.09.001.
Article
CAS
PubMed
Google Scholar
Rico E, Alzate JF, Arias AA, Moreno D, Clos J, Gago F, Moreno I, Domínguez M, Jiménez-Ruiz A: Leishmania infantum expresses a mitochondrial nuclease homologous to EndoG that migrates to the nucleus in response to an apoptotic stimulus. Mol Biochem Parasitol. 2009, 163 (1): 28-38. 10.1016/j.molbiopara.2008.09.007.
Article
CAS
PubMed
Google Scholar
Alzate J, Alvarez-Barrientos , Gonzales VM, Jimenes-Ruiz : Heat-induced programmed cell death in Leishmania infantum is reverted by Bcl-xl expression. Apoptosis. 2006, 11 (2): 161-171. 10.1007/s10495-006-4570-z.
Article
CAS
PubMed
Google Scholar
Alzate JF, Arias A, Mollinedo F, Rico E, de la Iglesia-Vicente J, Jiménez-Ruiz A: Edelfosine induces an apoptotic process in Leishmania infantum that is regulated by the ectopic expression of Bcl-XL and Hrk. Antimicrob Agents Chemother. 2008, 52 (10): 3779-3782. 10.1128/AAC.01665-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaczanowski S, Sajid M, Reece S: Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors. 2011, 4: 44-10.1186/1756-3305-4-44.
Article
PubMed Central
PubMed
Google Scholar
Smirlis D, Duszenko M, Jimenez-Ruiz A, Scoulica E, Bastien P, Fasel N, Soteriodou K: Targeting essential pathways in trypanosomatids give insights into protozoan mechanism of cell death. Parasit Vectors. 2010, 3: 107-10.1186/1756-3305-3-107.
Article
PubMed Central
PubMed
Google Scholar
Jimenez-Ruíz A, Alzate JF, Macleod ET, Lüder CG, Fasel N, Hurd H: Apoptotic markers in protozoan parasites. Parasit Vectors. 2010, 3: 104-10.1186/1756-3305-3-104.
Article
PubMed Central
PubMed
Google Scholar
Freire-de-Lima CG, Nascimento DO, Soares MB, Bozza PT, Castro-Faria-Neto HC, de Mello FG, DosReis GA, Lopes MF: Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature. 2000, 403 (6766): 199-203. 10.1038/35003208.
Article
CAS
PubMed
Google Scholar
Dos Reis GA, Lopes M: The importance of apoptosis for immune regulation in Chagas disease. Mem Inst Oswaldo Cruz. 2009, 104 (1): 259-262.
Article
CAS
Google Scholar
Van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R, Klinger M, Müller A, Hölscher C, Herrmann M, Sacks D, Solbach W, Laskay T: Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc Natl Acad Sci USA. 2006, 103 (37): 13837-13842. 10.1073/pnas.0600843103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Zandbergen , Lüder C, Heussler V, Duszenko M: Programmed cell death in unicellular parasites: a prerequisite for sustained infection?. Trends Parasitol. 2010, 10: 477-483.
Article
Google Scholar
Pelegrí C, Rodríguez-Palmero M, Morante MP, Comas J, Castell M, Franch A: Comparison of four lymphocyte isolation methods applied to rodent T cell subpopulations and B cells. J Immunol Methods. 1995, 187 (2): 265-271. 10.1016/0022-1759(95)00193-1.
Article
PubMed
Google Scholar
Morello A, Pavani M, Garbarino JA, Chamy MC, Frey C, Mancilla J, Guerrero A, Repetto Y, Ferreira J: Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995, 112 (2): 119-128.
Article
CAS
PubMed
Google Scholar