Skip to content

Advertisement

Parasites & Vectors

Open Access

The ribosomal transcription units of Haplorchis pumilio and H. taichui and the use of 28S rDNA sequences for phylogenetic identification of common heterophyids in Vietnam

  • Thanh Hoa Le1Email author,
  • Khue Thi Nguyen1,
  • Nga Thi Bich Nguyen1,
  • Huong Thi Thanh Doan1,
  • Do Trung Dung2 and
  • David Blair3
Parasites & Vectors201710:17

https://doi.org/10.1186/s13071-017-1968-0

Received: 29 October 2016

Accepted: 4 January 2017

Published: 9 January 2017

Abstract

Background

Heterophyidiasis is now a major public health threat in many tropical countries. Species in the trematode family Heterophyidae infecting humans include Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus. For molecular phylogenetic and systematic studies on trematodes, we need more prospective markers for taxonomic identification and classification. This study provides near-complete ribosomal transcription units (rTU) from Haplorchis pumilio and H. taichui and demonstrates the use of 28S rDNA sequences for identification and phylogenetic analysis.

Results

The near-complete ribosomal transcription units (rTU), consisting of 18S, ITS1, 5.8S, ITS2 and 28S rRNA genes and spacers, from H. pumilio and H. taichui from human hosts in Vietnam, were determined and annotated. Sequence analysis revealed tandem repetitive elements in ITS1 in H. pumilio and in ITS2 in H. taichui. A phylogenetic tree inferred from 28S rDNA sequences of 40 trematode strains/species, including 14 Vietnamese heterophyid individuals, clearly confirmed the status of each of the Vietnamese species: Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus. However, the family Heterophyidae was clearly not monophyletic, with some genera apparently allied with other families within the superfamily Opisthorchioidea (i.e. Cryptogonimidae and Opisthorchiidae). These families and their constituent genera require substantial re-evaluation using a combination of morphological and molecular data. Our new molecular data will assist in such studies.

Conclusions

The 28S rDNA sequences are conserved among individuals within a species but varied between genera. Based on analysis of 40 28S rDNA sequences representing 19 species in the superfamily Opisthorchioidea and an outgroup taxon (Alaria alata, family Diplostomidae), six common human pathogenic heterophyids were identified and clearly resolved. The phylogenetic tree inferred from these sequences again confirmed anomalies in molecular placement of some members of the family Heterophyidae and demonstrates the need for reappraisal of the entire superfamily Opisthorchioidea. The new sequences provided here supplement those already available in public databases and add to the array of molecular tools that can be used for the diagnosis of heterophyid species in human and animal infections.

Keywords

Ribosomal transcription unit Haplorchis pumilio Haplorchis taichui Heterophyidae28S rDNA sequencePhylogeny

Background

Many members of the trematode family Heterophyidae Odhner, 1914, use fishes as intermediate hosts and humans as definitive hosts [1, 2]. Six species in particular, Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus [2, 3] are among the most clearly recognized human pathogens and mostly occur in eastern Asia including China, the Philippines, Korea, Taiwan, Thailand, Laos, Cambodia and Vietnam [311]. Heterophyidiasis caused by these and related species has now become a major public health threat, not only in Asia but in parts of Africa and the Americas [3, 5, 10, 12, 13]. Humans acquire heterophyid infection by consumption of undercooked or raw freshwater fishes containing infective metacercariae [3, 14]. Infection with multiple species is frequently reported in Vietnam and elsewhere [3, 5, 7, 9, 14].

DNA sequences are commonly used for molecular diagnosis and systematic/phylogenetic studies. Although markers are often chosen from the mitochondrial genome, sequences from the nuclear ribosomal transcription unit (rTU) (including 18S, ITS1, ITS2 and 28S) are particularly useful and reliable for this purpose [10, 1522]. A single rTU consists of three coding regions (the 18S, 5.8S and 28S rRNA genes) separated by two internal transcribed spacers (ITS1 and ITS2) [17]. Short external transcribed spacers (ETS) are found 5' of the 18S gene and 3' of the 28S gene. Adjacent rTUs in the ribosomal array are separated by a long non-transcribed intergenic spacer (IGS) region [17, 23, 24]. Sequences from various portions of the rTU (18S, ITS1, ITS2 and 28S) have been widely used for inference of phylogenetic relationships and taxonomic clarification within and between many trematode families (e.g. [15, 18, 22, 2531]). Sequences of complete or near-complete rTUs are only available for a few species of trematode [12, 16, 20, 32, 33]. Clearly, however, such data will be valuable for many kinds of comparative analysis, including systematics/phylogenetics and studies on intra- and interspecific or even intra- and interindividual variation in trematodes [15, 18, 20, 34, 35]. In particular, these data are needed for the large family Heterophyidae, which comprises more than 30 genera, many containing species infecting humans [1, 2, 12, 15, 34]. Heterophyid species in Vietnam have well been described epidemiologically and morphologically, but molecular data useful for diagnosis and identification, as well as taxonomy, are still limited [57, 9, 14].

The aim of this paper is to present the sequence of near-complete ribosomal transcription units from Haplorchis pumilio and H. taichui, commonly found in humans. Portions of the 28S rRNA gene from other heterophyids infecting humans in Vietnam are also presented, i.e. Centrocestus formosanus, Haplorchis yokogawai, Procerovum varium and Stellantchasmus falcatus. The data will be used to explore the phylogenetic positions of these genera in the family Heterophyidae and in the class Trematoda.

Methods

Heterophyid samples

Metacercariae of Haplorchis spp. and Centrocestus spp. were collected from fish species (common carp, Cyprinus carpio, and grass carp, Ctenopharyngodon idellus) and cercariae from freshwater snails (Melanoides tuberculata) in Nam Dinh Province [8, 14] (Table 1).
Table 1

Summary data for the heterophyids used in the phylogenetic analysis and molecular identification

Sequence code

Life-cycle stage

Host

Province

Reference

GenBank No.

Identification

CfoHG2

Adult

Human

Ha Giang

This study

KY369153

Centrocestus formosanus

CspMND2

Metacercaria

Fish

Nam Dinh

[14]

KY369154

Centrocestus formosanus

HPU8QT

Adult

Human

Quang Tri

This study

KY369155

Haplorchis pumilio

HPU6HG

Adult

Human

Ha Giang

This study

KY369156

Haplorchis pumilio

HspCeS1

Cercaria

Snail

Nam Dinh

[8]

KY369157

Haplorchis pumilio

HpDzH

Adult

Human

Nam Dinh

This study

KX815125

Haplorchis pumilio a

HTA2HG

Adult

Human

Ha Giang

This study

KY369158

Haplorchis taichui

HTAQT3

Adult

Human

Quang Tri

This study

KX815126

Haplorchis taichui a

HspYOK

Metacercaria

Fish

Nam Dinh

This study

KY369159

Haplorchis yokogawai

An394

Cercaria

Snail

Nam Dinh

[8]

KY369160

Haplorchis yokogawai

HspND

Adult

Human

Nam Dinh

This study

KY369161

Procerovum varium

SfND

Adult

Human

Nam Dinh

This study

KY369162

Stellantchasmus falcatus

SfQN1

Adult

Human

Quang Ninh

This study

KY369163

Stellantchasmus falcatus

SfQN2

Adult

Human

Quang Ninh

This study

KY369164

Stellantchasmus falcatus

a Haplorchis pumilio and H. taichui samples chosen for sequencing the near complete ribosomal transcription unit

Adults of Centrocestus spp., Haplorchis spp., Procerovum spp. and Stellantchasmus spp., originating from Ha Giang, Nam Dinh, Quang Tri and Quang Ninh Provinces, in the north of Vietnam, were collected directly from feces of naturally infected humans after treatment with praziquantel and purgation by magnesium sulfate (MgSO4) [5, 14] (Table 1). Each adult worm, unstained or stained with acetic carmine, was morphologically identified to species by light microscopy [3, 5, 14]. Up to ten worms of each species recovered per human were individually fixed in 70% ethanol; one or two worms of each species were subjected to molecular analysis. The samples HTAQT3 of Haplorchis taichui and HpDzH of H. pumilio, collected from people in Quang Tri and Nam Dinh Provinces, respectively, were chosen for amplification and sequencing of the rTU. Only the 28S region was amplified and sequenced from other species for molecular identification and phylogenetic analysis (Table 1).

Genomic DNA extraction, primers and amplification

Total genomic DNA was extracted from individual cercariae, metacercariae or adult specimens using the GeneJET™ Genomic DNA Purification Kit (Thermo Fisher Scientific Inc., MA, USA), according to the manufacturer’s instructions. Genomic DNA was eluted in 50 μl of the elution buffer provided in the kit and stored at -20 °C. The DNA concentration was estimated using a GBC UV/visible 911A spectrophotometer (GBC Scientific Equipment Pty. Ltd., Braeside VIC, Australia) and diluted to a working 50 ng/μl: 2 μl were used as template in a PCR of 50 μl volume.

All rTU-universal primers, used both for amplification and sequencing the rTU of H. pumilio and H. taichui, are listed in Table 2. Primers UD18SF/U3SR amplified the 18S and ITS1 region and U3SF/1500R amplified the ITS2 and 28S region. The primer pairs U18SF/U18SR and U28SF/U28SR, were used for obtaining major fragments of ribosomal 18S or 28S, respectively. These primers were also used as sequencing primers, as were additional internal primers (Table 2).
Table 2

Primers for amplification and sequencing of the ribosomal transcription unit

Primer name

Sequence (5'–3')

Length (bp)

Tm (°C)

Target gene

Reference

UD18SF

AACCTGGTTGATCCTGCCAG

20

59

18S (F)

[15]

NS1F

GTAGTCATATGCTTGTCTC

19

48

18S (F)

This study

U18SF

GCGAATGGCTCATTAAATCAGC

22

57

18S (F)

This study

U18S2Ra

GGTTCTGTTCTAATAAATCCAC

22

50

18S (R)

This study

U18SARa

CCGTCGCCGACACAAGGCCGAC

22

67

18S (R)

This study

NS2Fa

GCAAGTCTGGTGCCAGCAGCC

21

66

18S (F)

This study

NS2Ra

GGCCTGCTTTGAGCACTC

18

59

18S (R)

This study

U18S2F

TCGTGACTGGGATCGGGGC

19

64

18S (F)

This study

NS5Fa

TGAATGGTTTAGCAAGGTCCTCGG

24

61

18S (F)

This study

U18SRa

GGAACCAATCCGAGGACCTTGC

22

63

18S (R)

This study

NS8Ra

CACCTACGGAAACCTTGTTACGACTT

26

60

18S (R)

This study

U3SF

GGTACCGGTGGATCACTCGGCTCGTG

26

67

5.8S (F)

This study

U3SR

CGACCCTCGGACAGGCG

17

64

5.8S (R)

This study

U28SFa

CTAACAAGGATTCCCTTAGTAAC

23

52

28S (F)

This study

U28S2Ra

ACAACCCGACTCCAAGGTC

19

59

28S (R)

This study

U28Fa

TCGGAGACGGCGGCTTG

17

63

28S (F)

This study

U28S2Fa

ATCACCGGCCCGTCCCATG

19

65

28S (F)

This study

U28SR

GTCTTTCGCCCCTATACTCAC

21

57

28S (R)

This study

1500R

GCTATCCTGAGGGAAACTTCG

21

57

28S (R)

[15]

Abbreviations F forward, R reverse, Tm melting temperature

aPrimers used for sequencing

PCR reactions of 50 μl were prepared using 25 μl of DreamTaq PCR Master Mix (2×) (Thermo Fisher Scientific Inc., MA, USA) and 2 μl DNA template (50 ng/μl), 2 μl of each primer (10 pmol/μl), 2 μl DMSO (dimethyl sulfoxide) and 17 μl H2O. All PCRs were performed in a MJ PTC-100 thermal cycler with initiation at 94 °C for 5 min, followed by 35 cycles consisting of denaturation for 30 s at 94 °C, annealing at 56 °C for 30 s, extension at 72 °C for 6 min; and a final extension at 72 °C for 10 min. The PCR products (10 μl of each) were examined on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light (Wealtec, Sparks, NV, USA).

The amplicons were eluted from the gel and subjected to direct sequencing by primer-walking in both directions.

Annotation and phylogenetic analysis

Boundaries of ribosomal 18S, 5.8S and 28S genes were determined by alignment, using the Clustal X program [36], with known ribosomal DNA sequences inferred from complete or near-complete rTU sequences available in the GenBank database or previous publications, i.e. for Euryhelmis costaricensis (GenBank: AB521797); Isthmiophora hortensis (AB189982); Paragonimus kellicotti (HQ900670); Paramphistomum cervi [33]; and some partial rTUs including Centrocestus sp. (AY245699); and Haplorchis pumilio (AY245706) and Haplorchis taichui (AY245705) [12]. For internal transcribed spacers, ITS1 was recognized as the region located between 18S and 5.8S and ITS2 as between and 5.8S and 28S, respectively. Tandem repeats (TRs) were detected in the ITS1 or ITS2 using the Tandem Repeat Finder v3.01 [37].

Newly obtained partial 28S sequences (approximately, 1,100 nucleotides) of 14 Vietnamese heterophyids and 25 additional sequences, representing species of all three families of the superfamily Opisthorchioidea available in GenBank, and including another 17 sequences from members of the family Heterophyidae, were aligned using GENEDOC2.7 (available at: http://iubio.bio.indiana.edu/soft/molbio/ibmpc/genedoc-readme.html) (Tables 1 and 3). Also included in the alignment was Alaria alata (family Diplostomidae) as an outgroup species. The alignment was trimmed to the length of the shortest sequence, saved in FASTA format and imported into the MEGA6.06 software. To examine the phylogenetic position of the Vietnamese heterophyids relative to other trematodes, a phylogenetic tree was reconstructed (see list of sequences in Tables 1 and 3) using maximum likelihood (ML) analysis with the general time reversible (GTR) + G+ I model (gamma rate heterogeneity and a proportion of invariant sites). This model was given the best Bayesian information criterion score by MEGA. Confidence in each node was assessed using 1,000 bootstrap resamplings [38]. A Bayesian analysis was also conducted using MrBayes v3.2 [39] and the same model of sequence evolution. Five million generations were performed (two parallel runs, each with four chains), more than required for the standard deviation of the splits frequencies to fall below 0.01. Plots indicated that convergence was approached after fewer than 1,000,000 generations. The first 1,000,000 cycles were therefore discarded as ‘burn-in’ and trees sampled every 1,000 generations.
Table 3

Summary data for the 28S rDNA sequences for heterophyids and other trematodes available on GenBank and used in the phylogenetic analysis and species identification

Family

Country

Species

GenBank no.

Reference

Heterophyidae

Thailand

Centrocestus formosanus a

HQ874609

GenBank

Germany

Cryptocotyle lingua

AY222228

[18]

Japan

Euryhelmis costaricensis

AB521797

[32]

Japan

Euryhelmis costaricensis

AB521799

[32]

Thailand

Haplorchis pumilio a

HM004186

[10]

Thailand

Haplorchis taichui a

HM004181

[18]

Thailand

Haplorchis yokogawai a

HM004178

[10]

Australia

Haplorchoides sp.

AY222226

[15]

Japan

Metagonimus hakubaensis

KM061388

[31]

Japan

Metagonimus hakubaensis

KM061389

[31]

Japan

Metagonimus katsuradai

KM061391

[31]

Japan

Metagonimus otsurui

KM061394

[31]

Japan

Metagonimus takahashii

HQ832636

[18]

Japan

Metagonimus yokogawai

HQ832639

[18]

Thailand

Procerovum varium a

HM004182

[18]

Vietnam

Stellantchasmus falcatus a

HM004174

[18]

Vietnam

Stellantchasmus falcatus a

HM004176

[10]

Cryptogonimidae

Sri Lanka

Acanthostomum sp.

KC489792

GenBank

New Caledonia

Adlardia novaecaledoniae

FJ788496

GenBank

USA

Caecincola parvulus

AY222231

[15]

Australia

Mitotrema anthostomatum

AY222229

[15]

Opisthorchiidae

Vietnam

Clonorchis sinensis

JF823989

[18]

Vietnam

Opisthorchis viverrini

KY369165

This study

Thailand

Opisthorchis viverrini

HM004188

[10]

Thailand

Opisthorchis viverrini

JF823990

[18]

Diplostomidae

Ukraine

Alaria alata b

AF184263

[15]

aPublished sequences for C. formosanus, H. pumilio, H. taichui, H. yokogawai, P. varium and S. falcatus and used in comparisons with those of the Vietnamese heterophyids

bSequence used as the outgroup

Results

Structural organization and characteristics of the ribosomal transcription unit of Haplorchis pumilio and H. taichui

Near-complete ribosomal transcription units (rTU) from H. pumilio and H. taichui were determined. The 28S rDNA sequences are conserved among individuals within a species but variable between species and genera. The near-complete rTU is 4,943 nucleotides in length for H. pumilio, and 4,796 nucleotides for H. taichui. These sequences have been deposited in GenBank under accession nos. KX815125 and KX815126, respectively. We did not sequence the IGS due to the highly repetitive sequences included in this region. The five regions of the rTU are: 18S, ITS1, 5.8S, ITS2 and 28S, structurally organized as usually seen in the ribosomal DNA operon of metazoans (Fig. 1).
Fig. 1

Structural organization of the near-complete ribosomal transcription units for Haplorchis pumilio and H. taichui. TRA1-3 and TRB1-3 are the tandem repeats in the ITS1 region of H. pumilio; TR1-3 are the repeats in H. taichui

In both H. pumilio and H. taichui, the 18S gene was 1,992 bp in length, and the 5.8S gene was 160 bp long; however, the currently sequenced portion of the 28S gene obtained from H. pumilio is 1,397 bp, and that of H. taichui, 1,403 bp (Table 4). These lengths represent only a portion of the complete 28S gene (around 3.2–5.5 kb in total for various trematode species [16]). The Vietnamese H. pumilio ITS1 region (1,106 bp) contains five complete tandem repeats, (TRA1-2-3, each of 136 bp) and TRB (TRB1-2 each of 123 bp) followed by a partial TRB3 of 84 bp (Table 4; Fig. 1). The ITS1 of the Vietnamese H. taichui (797 bp) lacks repeats. In contrast to ITS1, the ITS2 region (444 bp) in H. taichui from Vietnam (HTAQT3), possesses three tandem repeats, each of 83–85 bp, while in H. pumilio (HpDzH) this region lacks repeats (Table 4; Fig. 1).
Table 4

Position of ribosomal genes and internal transcribed spacers in the partially sequenced transcription unit of Haplorchis pumilio (4,943 bp) and H. taichui (4,796 bp)

Gene/region

Position (5'–3')

Repeat

Size (bp)

Intergenic spacer (bp)

Note

H. pumilio

    

GenBank: KX815125

18S

1–1992

 

1,992

0

 

ITS1

1993–3098

 

1,106

+66

66 bp to TRA1

 

2059–2194

TRA1

136

0

Tandem

 

2195–2330

TRA2

136

0

Tandem

 

2331–2466

TRA3

136

-91

Overlap with TRB1

 

2376–2498

TRB1

123

0

Tandem

 

2499–2621

TRB2

123

0

Tandem

 

2622–2705

TRB3 (partial)

84

+393

393 bp to 5.8S

5.8S

3099–3258

 

160

0

 

ITS2

3259–3546

 

288

0

No repeats

28S

3547–4943

 

1,397

 

5' partial sequence

H. taichui

    

GenBank: KX815126

18S

1–1992

 

1,992

0

 

ITS1

1993–2779

 

797

0

No repeats

5.8S

2790–2949

 

160

0

 

ITS2

2950–3393

 

444

+121

121 bp to TR1

 

3071–3155

TR1

85

0

Tandem

 

3156–3238

TR2

83

0

Tandem

 

3239–3323

TR3

85

+70

Tandem

28S

3394–4796

 

1,403

 

5' partial sequence

Partial 28S rDNA sequences were obtained from 14 samples of Vietnamese heterophyids representing six species: Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus (Table 1). These were aligned with 26 previously published sequences representing 20 species of trematodes in 4 families, including additional representatives of the Heterophyidae (Table 3). The alignment used was 1,100 bp in length. The phylogenetic tree shown in Fig. 2 is based on the maximum likelihood (ML) analysis. Bayesian posterior support values and bootstrap values are shown at relevant nodes. Bayesian and ML trees were almost identical, differing only in the placement of Centrocestus formosanus. In the Bayesian tree, this species fell into a clade (posterior support 0.86) with members of the Cryptogonimidae, whereas in the ML tree it was depicted as basal to all other opisthorchioideans (Fig. 2), albeit with low bootstrap support. Sequences of each of our six target heterophyid species were consistently grouped with those of the same species from published sources, thus confirming our morphological identifications. With one exception, species were clustered within their respective genera. The exception was Procerovum varium, which was nested among species of Haplorchis. Monophyly of the Heterophyidae was not observed. The Centrocestus formosanus sequences were grouped either with a sister relationship to the Cryptogonimidae (Bayesian analysis) or basal in the Opisthorchioidea (ML analysis), Sequences of two other heterophyids, Euryhelmis costaricensis from Japanese martens (Martes melampus) [32] and Cryptocotyle lingua, fell into a strongly supported clade (Bayesian posterior support value 1.0 and ML bootstrap support 96%), all other members of which belonged to the family Opisthorchiidae (Fig. 2).
Fig. 2

Phylogenetic tree including the six target heterophyid species from Vietnam (Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus) and other opisthorchioid trematodes based on partial 28S rDNA sequences (1,100 bp). Alaria alata (Diplostomidae) was used as the outgroup taxon. The tree depicted was inferred using maximum likelihood (ML) analysis with the general time reversible (GTR) + G + I model (gamma rate heterogeneity and a proportion of invariant sites) in the MEGA 6.06 package. Support for each node was evaluated using 1,000 bootstrap resamplings [38]. An almost identical tree was found using Bayesian analysis (see text for details). Numbers at nodes are Bayesian posterior support values/ML bootstrap values. The basal node for the superfamily Opisthorchioidea is indicated by an arrow. The scale-bar indicates the number of substitutions per site. Accession numbers are given at the end of each sequence name

Discussion

In this study, we have presented sequences of the near-complete ribosomal transcription units (rTUs) for two common species of the family Heterophyidae, Haplorchis pumilio and H. taichui, which infect humans in Vietnam. The obtained sequences encompass virtually the complete 18S gene (typical length range 1.7–2.9 kb) and almost half of the 28S gene (typical length range 3.3–5.5 kb) [16, 17]. Also obtained were the complete ITS1, 5.8S gene and ITS2 sequences for these species.

We have found repetitive sequences tandemly arranged in the ITS1 of H. pumilio and in the ITS2 of H. taichui. ITS sequences of both species have been reported from Israel [12]. Israeli H. pumilio possessed only two short tandem repeats (30 bp) in their ITS1, in strong contrast to the Vietnamese sequences, in which the ITS1 contained five complete repeats and one incomplete copy. The ITS1 sequences differed substantially in length between Vietnamese and Israeli individuals of the same species, 1,106 vs 640 bp in H. pumilio; and 797 vs 582 bp in H. taichui, due to differences in numbers of tandem repeats. These indicate intraspecific polymorphism as reported commonly in trematodes [8, 12, 33]. Likewise, ITS2 showed repetitive sequence differences between individuals from different locations. The presence of repeats in the internal transcribed spacers of trematodes has been reported for several taxa, including those in Schistosomatidae, Opisthorchiidae, Heterophyidae, Paramphistomatidae and others [8, 32, 33, 40]. The presence of repeats, variation in length and sequence variation, within and between species, all contribute to difficulties when trying to align ITS regions. This is particularly so when phylogenetically divergent species are being compared and suggest that this region is not suitable for deep-level phylogenies [17]. At the level of genus and species, however, alignments of ITS sequences have proved valuable for phylogenetic studies and molecular taxonomy [17, 41, 42].

The 18S and 28S rDNA sequences, however, are of considerable value for species identification and phylogenetic analysis [12, 15, 16, 18, 19, 25, 26, 30, 43, 44]. Alignment of these genes is generally straightforward, even among distantly related species, and long repeats do not occur.

The topology of the phylogenetic tree inferred from 40 trematode sequences in this study (Fig. 2) generally agreed well with previous findings. Most genera represented by multiple sequences formed well-supported monophyletic clusters. One striking exception was the sequence of Procerovum varium, which rendered Haplorchis paraphyletic. This relationship has also been noticed by others (e.g. [10]). Clearly, the definitions of these two genera will need to be revisited. The three families constituting the Opisthorchioidea, the Heterophyidae, Cryptogonimidae and Opisthorchiidae, are very poorly resolved in the tree. The Heterophyidae is not a monophyletic taxon. Indeed, two genera of nominal heterophyids, Euryhelmis and Cryptocotyle, appear to have closer affinities with the Opisthorchiidae than with the Heterophyidae. This relationship was also found by Thaenkham et al. [34] using 18S rDNA sequences, and by Thaenkham et al. [18] using concatenated 18S and 28S sequences. Paraphyly of the Heterophyidae with respect to the Opisthorchiidae was also demonstrated by [15] using 18S and 28S sequences. An additional heterophyid genus, Centrocestus, had an affinity with members of the Cryptogonimidae, or appeared as basal within the Opisthorchioidea (Fig. 2). Such a placement was not supported by analysis of concatenated 18S and 28S sequences by [18]. It is clear that the entire superfamily Opisthorchioidea presents broad systematic and taxonomic challenges to be met in the future using combined morphological and molecular approaches.

Conclusions

In conclusion, the present study determined and annotated the near-complete ribosomal transcription unit (rTU), consisting of 18S, ITS1, 5,8S, ITS2 and 28S rRNA genes and spacers, from H. pumilio and H. taichui from human hosts in Vietnam. The ITS1 in H. pumilio and ITS2 in H. taichui contained tandem repeats. The 28S rDNA sequences are conserved among individuals within a species but variable between species and genera. Based on 28S rDNA sequence analysis of 40 sequences representing 19 species in the superfamily Opisthorchioidea, six common human pathogenic heterophyids, Centrocestus formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium and Stellantchasmus falcatus were clearly resolved. In addition, the phylogenetic tree inferred from these sequences again confirmed anomalies in molecular placement of some members of the family Heterophyidae and demonstrates the need for reappraisal of the entire superfamily Opisthorchioidea. The new sequences provided here supplement those already available in public databases and add to the array of molecular tools that can be used for the diagnosis of heterophyid species in human and animal infections.

Abbreviations

ITS: 

Internal transcribed spacer

rTU: 

ribosomal transcription unit

TR: 

Tandem repeat

Declarations

Acknowledgments

We express our thanks to colleagues and technicians for providing and processing samples and contributing to our laboratory work.

Funding

This work was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.06-2012.05 (T.H. Le).

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article. Nucleotide sequences obtained in the present study have been deposited into the GenBank database with the following accession numbers: KX815125, KX815126 and KY369153–KY369164.

Authors’ contributions

THL, DB conceived the study, final data analyses and wrote the manuscrip. DTD conducted field collections. KTN, NTBN, HTTD conducted laboratory work and preliminary sequence analyses. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval

The study had ethical approval from the National Institute of Malariology, Parasitology and Entomology (NIMPE) on behalf of the Ministry of Health, Vietnam. Appropriate permission was obtained from the commune authorities and local households before the collection of parasite specimens from humans.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
(2)
Department of Parasitology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
(3)
College of Science and Engineering, James Cook University, Townsville, Australia

References

  1. Pearson J. Family Heterophyidae Leiper, 1909. In: Bray RA, Gibson DI, Jones A, editors. Keys to the Trematoda, vol. 3. London: CAB International and Natural History Museum UK; 2008. p. 113–42.Google Scholar
  2. Cribb T, Gibson D. Heterophyidae Leiper, 1909. Accessed through: World Register of Marine Species. 2010. http://www.marinespecies.org/aphia.php?p=taxdetails&id=108441. Accessed 12 Oct 2016.
  3. Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne intestinal flukes in Southeast Asia. Korean J Parasitol. 2009;47:s69–102.View ArticlePubMedPubMed CentralGoogle Scholar
  4. Belizario Jr VY, de Leon WU, Bersabe MJ, Purnomo, Baird JK, Bangs MJ. A focus of human infection by Haplorchis taichui (Trematoda: Heterophyidae) in the southern Philippines. J Parasitol. 2004;90(5):11655–9.View ArticleGoogle Scholar
  5. Dung DT, Van De N, Waikagul J, Dalsgaard A, Chai JY, Sohn WM, et al. Fishborne zoonotic intestinal trematodes, Vietnam. Emerg Infect Dis. 2007;13(12):1828–33.View ArticlePubMed CentralGoogle Scholar
  6. Skov J, Kania PW, Dalsgaard A, Jorgensen R, Buchmann K. Life cycle stages of heterophyid trematodes in Vietnamese freshwater fishes traced by molecular and morphometric methods. Vet Parasitol. 2009;160:66–75.View ArticlePubMedGoogle Scholar
  7. Chai JY, De NV, Sohn WM. Foodborne trematode metacercariae in fish from northern Vietnam and their adults recovered from experimental hamsters. Korean J Parasitol. 2012;50(4):317–25.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Van KV, Dalsgaard A, Blair D, Le TH. Haplorchis pumilio and H. taichui in Vietnam discriminated using ITS-2 DNA sequence data from adults and larvae. Exp Parasitol. 2009;123:146–51.View ArticlePubMedGoogle Scholar
  9. Phan VT, Ersbøll AK, Do DT, Dalsgaard A. Raw-fish-eating behavior and fishborne zoonotic trematode infection in people of northern Vietnam. Foodborne Pathog Dis. 2011;8(2):255–60.View ArticlePubMedGoogle Scholar
  10. Thaenkham U, Dekumyoy P, Komalamisra C, Sato M, Dung do T, Waikagul J. Systematics of the subfamily Haplorchiinae (Trematoda: Heterphyidae), based on nuclear ribosomal DNA genes and ITS2 region. Parasitol Int. 2010;59(3):460–5.View ArticlePubMedGoogle Scholar
  11. Krailas D, Veeravechsukij N, Chuanprasit C, Boonmekam D, Namchote S. Prevalence of fish-borne trematodes of the family Heterophyidae at Pasak Cholasid Reservoir, Thailand. Acta Trop. 2016;156:79–86.View ArticlePubMedGoogle Scholar
  12. Dzikowski R, Levy MG, Poore MF, Flowers JR, Paperna I. Use of rDNA polymorphism for identification of Heterophyidae infecting freshwater fishes. Dis Aquat Organ. 2004;59(1):35–41.View ArticlePubMedGoogle Scholar
  13. Yousif F, Ayoub M, Tadros M, El Bardicy S. The first record of Centrocestus formosanus (Nishigori, 1924) (Digenea: Heterophyidae) in Egypt. Exp Parasitol. 2016;168:56–61.View ArticlePubMedGoogle Scholar
  14. De NV, Le TH. Human infections of fish-borne trematodes in Vietnam: prevalence and molecular specific identification at an endemic commune in Nam Dinh Province. Exp Parasitol. 2011;129(4):355–61.View ArticlePubMedGoogle Scholar
  15. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol. 2003;33:733–55.View ArticlePubMedGoogle Scholar
  16. Lockyer AE, Olson PD, Littlewood DTJ. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biol J Linnean Soc. 2003;78(2):155–71.View ArticleGoogle Scholar
  17. Blair D. Ribosomal DNA, variation in parasitic flatworms. In: Maule A, editor. Parasitic flatworms: molecular biology, biochemistry, immunology and control. Wallingford: CAB International; 2006. p. 96–123.Google Scholar
  18. Thaenkham U, Nawa Y, Blair D, Pakdee W. Confirmation of the paraphyletic relationship between families Opisthorchiidae and Heterophyidae using small and large subunit ribosomal DNA sequences. Parasitol Int. 2011;60(4):521–3.View ArticlePubMedGoogle Scholar
  19. Heneberg P. Phylogenetic data suggest the reclassification of Fasciola jacksoni (Digenea: Fasciolidae) as Fascioloides jacksoni comb. nov. Parasitol Res. 2013;112(4):1679–89.View ArticlePubMedGoogle Scholar
  20. Briscoe AG, Bray RA, Brabec J, Littlewood DTJ. The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitol Int. 2016;65(3):271–5.View ArticlePubMedGoogle Scholar
  21. Le TH, Nguyen NT, Nguyen KT, Doan HT, Dung DT, Blair D. A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infect Genet Evol. 2016;45:369–77.View ArticlePubMedGoogle Scholar
  22. Athokpam VD, Jyrwa DB, Tandon V. Utilizing ribosomal DNA gene marker regions to characterize the metacercariae (Trematoda: Digenea) parasitizing piscine intermediate hosts in Manipur, Northeast India. J Parasit Dis. 2016;40(2):330–8.View ArticlePubMedGoogle Scholar
  23. Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991;66:411–53.View ArticlePubMedGoogle Scholar
  24. Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA. The functional significance of ribosomal rDNA variation: impacts on the evolutionary ecology of organisms. Annu Rev Ecol Evol Syst. 2005;36:219–42.View ArticleGoogle Scholar
  25. Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology. 2003;126(3):203–24.View ArticlePubMedGoogle Scholar
  26. Králová-Hromadová I, Spakulová M, Horácková E, Turceková L, Novobilský A, Beck R, et al. Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol. 2008;94(1):58–67.View ArticlePubMedGoogle Scholar
  27. Littlewood DTJ. Platyhelminth systematics and the emergence of new characters. Parasite. 2008;15:333–41.View ArticlePubMedGoogle Scholar
  28. Heneberg P, Sitko J, Bizos J. Integrative taxonomy of central European parasitic flatworms of the family Prosthogonimidae Lühe, 1909 (Trematoda: Plagiorchiida). Parasitol Int. 2015;64(5):264–73.View ArticlePubMedGoogle Scholar
  29. Fraija-Fernández N, Olson PD, Crespo EA, Raga JA, Aznar FJ, Fernández M. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. Int J Parasitol. 2015;45(2–3):167–73.View ArticlePubMedGoogle Scholar
  30. Stanevičiūtė G, Stunžėnas V, Petkevičiūtė R. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis. Comp Cytogenet. 2015;9(2):257–70.View ArticlePubMedPubMed CentralGoogle Scholar
  31. Pornruseetairatn S, Kino H, Shimazu T, Nawa Y, Scholz T, Ruangsittichai J, et al. A molecular phylogeny of Asian species of the genus Metagonimus (Digenea)-small intestinal flukes-based on representative Japanese populations. Parasitol Res. 2016;115(3):1123–30.View ArticlePubMedGoogle Scholar
  32. Sato H, Ihara S, Inaba O, Une Y. Identification of Euryhelmis costaricensis metacercariae in the skin of Tohoku hynobiid salamanders (Hynobius lichenatus), northeastern Honshu, Japan. J Wildl Dis. 2010;46(3):832–42.View ArticlePubMedGoogle Scholar
  33. Zheng X, Chang QC, Zhang Y, Tian SQ, Lou Y, Duan H, et al. Characterization of the complete nuclear ribosomal DNA sequences of Paramphistomum cervi. Scientific World J. 2014;751907.Google Scholar
  34. Thaenkham U, Blair D, Nawa Y, Waikagul J. Families Opisthorchiidae and Heterophyidae: are they distinct? Parasitol Int. 2012;61(1):90–3.View ArticlePubMedGoogle Scholar
  35. Tkach VV, Kudlai O, Kostadinova A. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int J Parasitol. 2016;46:171–85.View ArticlePubMedGoogle Scholar
  36. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.View ArticlePubMedGoogle Scholar
  37. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.View ArticlePubMedPubMed CentralGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetic analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.View ArticlePubMedPubMed CentralGoogle Scholar
  39. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.View ArticlePubMedPubMed CentralGoogle Scholar
  40. Tatonova YV, Chelomina GN, Besprosvannykh VV. Genetic diversity of nuclear ITS1-5.8S-ITS2 rDNA sequence in Clonorchis sinensis Cobbold, 1875 (Trematoda: Opisthorchidae) from the Russian Far East. Parasitol Int. 2012;61(4):664–74.View ArticlePubMedGoogle Scholar
  41. Pérez-Ponce DE, León G, García-Varela M, Pinacho-Pinacho CD, Sereno-Uribe AL, Poulin R. Species delimitation in trematodes using DNA sequences: Middle-American Clinostomum as a case study. Parasitology. 2016;143(13):1773–89.View ArticleGoogle Scholar
  42. Choudhary K, Verma AK, Swaroop S, Agrawal A. A review on the molecular characterization of digenean parasites using molecular markers with special reference to ITS region. Helminthologia. 2015;52(3):167–87.View ArticleGoogle Scholar
  43. Johnston DA, Kane RA, Rollinson D. Small subunit (18S) ribosomal RNA gene divergence in the genus Schistosoma. Parasitology. 1993;107(2):147–56.View ArticlePubMedGoogle Scholar
  44. Fernandez M, Littlewood DT, Latorre A, Raga JA, Rollinson D. Phylogenetic relationships of the family Campulidae (Trematoda) based on 18S rRNA sequences. Parasitology. 1998;117(4):383–91.View ArticlePubMedGoogle Scholar

Copyright

© The Author(s). 2017

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Advertisement