Faye O, Freire CCM, Iamarino A, Faye O, de Oliveira JVC, Diallo M, Zanotto PMA, Sall AA. Molecular evolution of Zika Virus during Its emergence in the 20th Century. PLoS Negl Trop Dis. 2014;8:1–10.
Google Scholar
Cook S, Holmes EC. A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch Virol. 2006;151:309–25.
CAS
PubMed
Google Scholar
Chambers T. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.
CAS
PubMed
Google Scholar
Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9.
CAS
PubMed
PubMed Central
Google Scholar
Petersen LR, Jamieson DJ, Powers AM, Honein MA. Zika Virus. N Engl J Med. 2016;374:1552–63.
CAS
PubMed
Google Scholar
Gulland A. Zika virus is a global public health emergency, declares WHO. BMJ. 2016;352:657.
Google Scholar
Kazmi SS, Ali W, Bibi N, Nouroz F. A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res. 2020;27:1–11.
Google Scholar
Wells MB, Andrew J. Anopheles salivary gland architecture shapes Plasmodium sporozoite availability for transmission. Am Soc Microbiol. 2019;10:1–17.
CAS
Google Scholar
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, Tripathi A, Mlambo G, Dimopoulos G. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.
PubMed
PubMed Central
Google Scholar
Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, Dimopoulos G. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:1–11.
Google Scholar
Anglero-Rodriguez Y, Talyuli A, Blumberg B, Kang S, Demby C, Shields A, Carlson J, Jupatanakul N, Dimopoulos G. An Aedes aegypti -associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 2017;6:1–20.
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25:101-112.e5.
CAS
PubMed
Google Scholar
Lindsey ARI, Bhattacharya T, Newton ILG, Hardy RW. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses. 2018;10:141.
PubMed Central
Google Scholar
Asad S, Hussain M, Hugo L, Osei-Amo S, Zhang G, Watterson D, Asgari S. Suppression of the pelo protein by Wolbachia and its effect on dengue virus in Aedes aegypti. PLoS Negl Trop Dis. 2018;12:1–20.
Google Scholar
Moretti R, Yen PS, Houé V, Lampazzi E, Desiderio A, Failloux AB, Calvitti M. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses. PLoS Negl Trop Dis. 2018;12:1–20.
Google Scholar
Mohanty I, Rath A, Swain SP, Pradhan N, Hazra RK. Wolbachia population in vectors and non-vectors: a sustainable approach towards dengue control. Curr Microbiol. 2019;76:133–43.
CAS
PubMed
Google Scholar
McLean BJ, Dainty KR, Flores HA, O’Neill SL. Differential suppression of persistent insect specific viruses in trans-infected wMel and wMelPop-CLA Aedes-derived mosquito lines. Virology. 2018;2019(527):141–5.
Google Scholar
Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol. 2015;81:2233–43.
CAS
PubMed
PubMed Central
Google Scholar
Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Whitney AM, Gulvik CA, Bell ME, Rendueles O, Cury J, Hugon P, Clermont D, Enouf V, Loparev V, Juieng P, Monson T, Warshauer D, Elbadawi LI, Walters MS, Crist MB, Noble-wang J, Borlaug G, Rocha EPC, Criscuolo A, Touchon M, Davis JP, Holt KE, Mcquiston JR, Brisse S. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Winconsin outbreak strain. Nat Commun. 2017;8(May):1–12.
Google Scholar
Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I. Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol. 2012;80:556–65.
CAS
PubMed
Google Scholar
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, Chandra R, Dimopoulos G. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2015;16:2980–94.
Google Scholar
Akhouayri IG, Habtewold T, Christophides GK. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae. PLoS ONE. 2013;8:1–12.
Google Scholar
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012;8:1–12.
Google Scholar
Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6:1–9.
Google Scholar
Ngwa C, Glockner V, Abdelmohsen U, Scheuermayer M, Fischer R, Hentschel U, Pradel G. 16S rRNA gene-based identification of Elizabethkingia meningoseptica (Flavobacteriales:Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector Anopheles stephensi (Diptera: Culicidae) with antimicrobial activities. J Med Entomol. 2013;50:404–14.
CAS
PubMed
Google Scholar
Villegas LEM, Campolina TB, Barnabe NR, Orfano AS, Chaves BA, Norris DE, Pimenta PFP, Secundino NFC. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS One. 2018;13:e0190352.
PubMed
PubMed Central
Google Scholar
Ciota A, Bialosuknia S, Zink S, Brecher M, Ehrbar D, Morrissette M, Kramer LD. Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerg Infect Dis. 2017;23:1110–7.
CAS
PubMed
PubMed Central
Google Scholar
IPCC: Third Assessment Report. Cambridge, United Kingdom; 2007.
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–8.
CAS
PubMed
PubMed Central
Google Scholar
Chao A. Nonparametric estimation the number of classes in a population. Ann Math Stat. 1984;20:265–70.
Google Scholar
Bray RJ, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
CAS
PubMed
PubMed Central
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(December):18–22.
Google Scholar
Kämpfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol. 2011;61:2670–5.
PubMed
Google Scholar
Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Elizabethkingia endophytica sp. nov. isolated from Zea mays and emended description of Elizabethkingia anophelis Kämpfer et al. 2011. Int J Syst Evol Microbiol. 2015;65:2187–93.
PubMed
Google Scholar
Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium be. Int J Syst Evol Microbiol. 2013;63(12):4639–62.
CAS
PubMed
Google Scholar
Li Y, Kawamura Y, Fujiwara N, Naka T, Hongsheng L, Huang X, Kobayashi K, Ezaki T. Chryseobacterium miricola sp. nov., A novel species isolated from condensation water of space station Mir. Syst Appl Microbiol. 2003;26:523–8.
CAS
PubMed
Google Scholar
Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Graziano J, Emery B, Bell M, Loparev V, Juieng P, Gartin J, Bizet C, Clermont D, Criscuolo A, Brisse S, McQuiston JR. Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov. Elizabethkingia ursingii sp. nov., and Eliz. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol. 2018;111:55–72.
CAS
Google Scholar
King E. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol. 1959;31:241–7.
CAS
PubMed
Google Scholar
Hayes EB. Zika virus outside Africa. Emerg Infect Dis. 2009;15:1347–50.
PubMed
PubMed Central
Google Scholar
Hennessey M, Fischer M, Staples JE. Zika virus spreads to new areas—region of the Americas, May 2015–January 2016. Morb Mortal Wkly Rep. 2016;65:55–8.
Google Scholar
Zanluca C, Campos V, De MA, Luiza A, Mosimann P, Igor G, Nunes C, Luz K. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015;110(June):569–72.
CAS
PubMed
PubMed Central
Google Scholar
Musso D, Nilles E, Cao-Lormeau V. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014;20:1–2.
Google Scholar
Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. Zika Virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.
CAS
PubMed
Google Scholar
Vose R, Easterling K, Kunkel A, LeGrande, Wehner M. Temperature changes in the United States. In Clim Sci Spec Rep Fourth Natl Clim Assesment. Edited by Wuebbles D, Fahey D, Hibbard K, Dokken D, Stewart B, Maycock TUS. Global Change Research Program, Washington; 2017:185–206.
Romero-Lankao P, Smith J, Davidson D, Diffenbaugh N, Kinney P, Kirshen P, Kovacs P, Ruiz L. Climate change 2014: impacts, adaptation and vulnerability. In: Barros V, Field D, Dokken M, Mastrandrea K, Mach T, Bilir M, Chatterjee M, Ebi K, Estrada Y, Genova R, Girma E, Kissel A, Levy S, MacCracken S, Mastrandrea P, White L, editors. Reg Asp Contrib Work Gr II to Fifth Assesment Rep Intergov Panel Clim Chang. New York: Cambridge University Press; 2014. p. 1439–98.
Google Scholar
Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci. 2008;105:7774–8.
CAS
PubMed
PubMed Central
Google Scholar
Lokmer A, Mathias Wegner K. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 2015;9:670–82.
CAS
PubMed
Google Scholar
Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-harshman NM, Hoffmann AA. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017;13:1–17.
Google Scholar
Shan H, Deng W, Luan J, Zhang M-J, Zhen Z, Liu S-S, Liu Y-Q. Thermal sensitivity of bacteriocytes constrains the persistence of intracellular bacteria in whitefly symbiosis under heat stress. Environ Microbiol. 2017;9:706–16.
CAS
Google Scholar
Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, Dash CK, Wang L. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol. 2017;19:3439–49.
CAS
PubMed
Google Scholar
Muturi EJ, Bara JJ, Rooney AP, Hansen AK. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol Ecol. 2016;25:4075–90.
CAS
PubMed
Google Scholar
Zink SD, van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. Exposure to west nile virus increases bacterial diversity and immune gene expression in culex pipiens. Viruses. 2015;7:5619–31.
CAS
PubMed
PubMed Central
Google Scholar
Kukutla P, Lindberg BG, Pei D, Rayl M, Wanqin Y, Steritz M, Faye I, Xu J. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae. PLoS ONE. 2014;9:e97715.
PubMed
PubMed Central
Google Scholar
Diagne CT, Diallo D, Faye O, Ba Y, Faye O, Gaye A, Dia I, Faye O, Weaver SC, Sall AA, Diallo M. Potential of selected Senegalese Aedes spp mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect Dis. 2015;15:1–7.
Google Scholar
Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Myrielle DR, Lourenco de Oliveira R, Failloux A. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl Trop Dis. 2016;10:1–11.
Google Scholar
Diagne CT, Faye O, Guerbois M, Knight R, Diallo D, Faye O, Ba Y, Dia I, Faye O, Weaver SC, Sall AA, Diallo M. Vector competence of Aedes aegypti and Aedes vittatus (Diptera:Culicidae) from Senegal and Cape Verde Archipelago for West African lineages of Chikungunya Virus. Am J Trop Med Hyg. 2014;91:635–41.
PubMed
PubMed Central
Google Scholar
Calvez E, Guillaumot L, Girault D, Richard V, O’Connor O, Paoaafaite T, Teurlai M, Pocquet N, Cao-Lormeau V-M, Dupont-Rouzeyrol M. Dengue-1 virus and vector competence of Aedes aegypti (Diptera:Culicidae) populations from New Caledonia. Parasit Vectors. 2017;10:1–8.
Google Scholar
Gaye A, Wang E, Vasilakis N, Guzman H, Diallo D, Talla C, Ba Y, Dia I, Weaver SC, Diallo M. Potential for sylvatic and urban Aedes mosquitoes from Senegal to transmit the new emerging dengue serotypes 1, 3 and 4 in West Africa. PLoS Negl Trop Dis. 2019;13(2):e0007043.
PubMed
PubMed Central
Google Scholar
Naze F, Le Roux K, Schuffenecker I, Zeller H, Staikowsky F, Grivard P, Michault A, Laurent P. Simultaneous detection and quantitation of Chikungunya, Dengue and West Nile viruses by multiplex RT-PCR assays and Dengue virus typing using High Resolution Melting. J Virol Methods. 2009;162:1–7.
CAS
PubMed
Google Scholar
Laurent P, Le Roux K, Grivard P, Bertil G, Naze F, Picard M, Staikowsky F, Barau G, Schuffenecker I, Michault A. Development of a sensitive real-time reverse transcriptase PCR assay with an internal control to detect and quantify chikungunya virus. Clin Chem. 2007;53:1408–14.
CAS
PubMed
Google Scholar
Callahan JD, Wu SL, Dion-schultz A, Mangold BE, Peruski LF, Watts DM, Porter KR, Murphy GR, Suharyono W, King C, Hayes CG. Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J Clin Microbiol. 2001;39:4119–24.
CAS
PubMed
PubMed Central
Google Scholar