Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, et al. Chapter two: a selective review of advances in coccidiosis research. In: Rollinson D, editor. Advances in parasitology, vol. 83. Cambridge: Academic Press; 2013. p. 93–171.
Demeler J, Ramünke S, Wolken S, Ianiello D, Rinaldi L, Gahutu JB, et al. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR. PLoS ONE. 2013;8:e61285.
CAS
PubMed
PubMed Central
Google Scholar
McNally J, Callan D, Andronicos N, Bott N, Hunt PW. DNA-based methodology for the quantification of gastrointestinal nematode eggs in sheep faeces. Vet Parasitol. 2013;198:325–35.
CAS
PubMed
Google Scholar
Blake DP, Hesketh P, Archer A, Carroll F, Smith AL, Shirley MW. Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens. Mol Biochem Parasitol. 2004;138:143–52.
CAS
PubMed
Google Scholar
Blake DP, Shirley MW, Smith AL. Genetic identification of antigens protective against coccidia. Parasite Immunol. 2006;28:305–14.
CAS
PubMed
Google Scholar
Swinkels WJC, Post J, Cornelissen JB, Engel B, Boersma WJA, Rebel JMJ. Immune responses in Eimeria acervulina infected one-day-old broilers compared to amount of Eimeria in the duodenum, measured by real-time PCR. Vet Parasitol. 2006;138:223–33.
CAS
PubMed
Google Scholar
Balard A, Jarquín-Díaz VH, Jost J, Mittné V, Böhning F, Ďureje Ľ, et al. Coupling between tolerance and resistance for two related Eimeria parasite species. Ecol Evol. 2020;10:13938–48.
PubMed
PubMed Central
Google Scholar
Hodgson JN. Coccidiosis: oocyst counting technique for coccidiostat evaluation. Exp Parasitol. 1970;28:99–102.
CAS
PubMed
Google Scholar
Haug A, Williams RB, Larsen S. Counting coccidial oocysts in chicken faeces: a comparative study of a standard McMaster technique and a new rapid method. Vet Parasitol. 2006;136:233–42.
PubMed
Google Scholar
Blake DP, Hesketh P, Archer A, Shirley MW, Smith AL. Eimeria maxima: the influence of host genotype on parasite reproduction as revealed by quantitative real-time PCR. Int J Parasitol. 2006;36:97–105.
CAS
PubMed
Google Scholar
Morgan JAT, Morris GM, Wlodek BM, Byrnes R, Jenner M, Constantinoiu CC, et al. Real-time polymerase chain reaction (PCR) assays for the specific detection and quantification of seven Eimeria species that cause coccidiosis in chickens. Mol Cell Probes. 2009;23:83–9.
CAS
PubMed
Google Scholar
Velkers FC, Blake DP, Graat EAM, Vernooij JCM, Bouma A, de Jong MCM, et al. Quantification of Eimeria acervulina in faeces of broilers: comparison of McMaster oocyst counts from 24h faecal collections and single droppings to real-time PCR from cloacal swabs. Vet Parasitol. 2010;169:1–7.
CAS
PubMed
Google Scholar
Vrba V, Blake DP, Poplstein M. Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken. Vet Parasitol. 2010;174:183–90.
CAS
PubMed
Google Scholar
Nolan MJ, Tomley FM, Kaiser P, Blake DP. Quantitative real-time PCR (qPCR) for Eimeria tenella replication — implications for experimental refinement and animal welfare. Parasitol Int. 2015;64:464–70.
CAS
PubMed
PubMed Central
Google Scholar
Balard A, Jarquín-Díaz VH, Jost J, Martincová I, Ďureje Ľ, Piálek J, et al. Intensity of infection with intracellular Eimeria spp and pinworms is reduced in hybrid mice compared to parental subspecies. J Evol Biol. 2020;33:435–48.
PubMed
Google Scholar
Jarquín-Díaz VH, Balard A, Jost J, Kraft J, Dikmen MN, Kvičerová J, et al. Detection and quantification of house mouse Eimeria at the species level—challenges and solutions for the assessment of coccidia in wildlife. Int J Parasitol Parasites Wildl. 2019;10:29–40.
PubMed
PubMed Central
Google Scholar
Levine ND, Ivens V. The coccidian parasites (Protozoa, Sporozoa) of rodents 33. Illinois biological monographs, vol. 33. Urbana: University of Illinois Press; 1986.
Ankrom SL, Chobotar B, Ernst JV. Life cycle of Eimeria ferrisi Levine & Ivens, 1965 in the mouse Mus musculus. J Protozool. 1975;22:317–23.
Google Scholar
Schito ML, Barta JR, Chobotar B. Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol. 1996;82:255–62.
CAS
PubMed
Google Scholar
Chobotar B, Scholtyseck E, Sénaud J, Ernst JV. A fine structural study of asexual stages of the murine coccidium Eimeria ferrisi Levine and Ivens 1965. Z Parasitenkd. 1975;45:291–306.
CAS
PubMed
Google Scholar
Shibley PR, Chobotar B, Entzeroth R. A scanning electron microscope study of the colon of the mouse (Mus musculus) infected with Eimeria ferrisi (Protozoa, Apicomplexa, Coccidia). Eur J Protistol. 1989;24:119–24.
CAS
PubMed
Google Scholar
Al-khlifeh E, Balard A, Jarquín-Díaz VH, Weyrich A, Wibbelt G, Heitlinger E. Eimeria falciformis BayerHaberkorn1970 and novel wild derived isolates from house mice: differences in parasite life cycle, pathogenicity and host immune reactions. BioRxiv. 2019. https://doi.org/10.1101/611277.
Article
Google Scholar
Martincová I, Ďureje Ľ, Kreisinger J, Macholán M, Piálek J. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol Evol. 2019;9:6124–37.
PubMed
PubMed Central
Google Scholar
Piálek J, Vyskočilová M, Bímová B, Havelková D, Piálková J, Dufková P, et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J Hered. 2008;99:34–44.
PubMed
Google Scholar
Gregorová S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha). 2000;46:31–41.
Google Scholar
Haberkorn A. Die Entwicklung von Eimeria falciformis (Eimer 1870) in der weißen Maus (Mus musculus). Z Parasitenkd. 1970;34:49–67.
Google Scholar
Heitlinger E, Spork S, Lucius R, Dieterich C. The genome of Eimeria falciformis—reduction and specialization in a single host apicomplexan parasite. BMC Genom. 2014;15:696.
Google Scholar
Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R News. 2002;2:7–10.
Google Scholar
Allison PD. Fixed effects regression models. Quantitative applications in the social sciences series, vol. 160. Newbury Park: SAGE Publishing; 2009.
Hill TD, Davis AP, Roos JM, French MT. Limitations of fixed-effects models for panel data. Sociol Perspect. 2020;63:357–69.
Google Scholar
Petrova Y, Westerlund J. Fixed effects demeaning in the presence of interactive effects in treatment effects regressions and elsewhere. J Appl Econ. 2020;35:960–4.
Google Scholar
Grömping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17(1):1–27.
Google Scholar
Lindeman RH, Merenda PF, Gold RZ. Introduction to bivariate and multivariate analysis. Northbrook: Scott Foresman Co.; 1980.
R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. http://www.R-project.org/.
Wickham H. Ggplot2: Elegant graphics for data analysis. 2nd ed. Berlin: Springer; 2016.
Google Scholar
Ahmed N, Heitlinger E, Affinass N, Kühl AA, Xenophontos N, Jarquin VH, et al. A novel non-invasive method to detect RELM beta transcript in gut barrier related changes during a gastrointestinal nematode infection. Front Immunol. 2019;10:445.
CAS
PubMed
PubMed Central
Google Scholar
Easton AV, Oliveira RG, O’Connell EM, Kepha S, Mwandawiro CS, Njenga SM, et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors. 2016;9:38.
PubMed
PubMed Central
Google Scholar
Santoro M, Viscardi M, Sgroi G, DAlessio N, Veneziano V, Pellicano R, et al. Real-time PCR detection of Toxoplasma gondii in tissue samples of wild boars (Sus scrofa) from southern Italy reveals high prevalence and parasite load. Parasit Vectors. 2019;12(1):335.
Luo RF, Scahill MD, Banaei N. Comparison of single-copy and multicopy real-time PCR targets for detection of Mycobacterium tuberculosis in paraffin-embedded tissue. J Clin Microbiol. 2010;48:2569–70.
CAS
PubMed
PubMed Central
Google Scholar
Chern EC, Siefring S, Paar J, Doolittle M, Haugland RA. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Lett Appl Microbiol. 2011;52:298–306.
CAS
PubMed
Google Scholar
Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLOS Med. 2015;12:e1001788.
PubMed
PubMed Central
Google Scholar
Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, Kurtz MA, et al. Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp in human samples. J Clin Microbiol. 2011;49:3892–904.
CAS
PubMed
PubMed Central
Google Scholar
del Cacho E, Gallego M, López-Bernad F, Quílez J, Sánchez-Acedo C. Expression of anti-apoptotic factors in cells parasitized by second-generation schizonts of Eimeria tenella and Eimeria necatrix. Vet Parasitol. 2004;125:287–300.
PubMed
Google Scholar
Graumann K, Hippe D, Groß U, Lüder CGK. Mammalian apoptotic signalling pathways: multiple targets of protozoan parasites to activate or deactivate host cell death. Microbes Infect. 2009;11:1079–87.
CAS
PubMed
Google Scholar
Lang M, Kann M, Zahner H, Taubert A, Hermosilla C. Inhibition of host cell apoptosis by Eimeria bovis sporozoites. Vet Parasitol. 2009;160:25–33.
CAS
PubMed
Google Scholar
Lutz K, Schmitt S, Linder M, Hermosilla C, Zahner H, Taubert A. Eimeria bovis-induced modulation of the host cell proteome at the meront I stage. Mol Biochem Parasitol. 2011;175:1–9.
CAS
PubMed
Google Scholar
Barta JR. Coccidiosis. In: Encyclopedia of Life Sciences. New York: John Wiley and Sons; 2001. p. 1–8.
Weerakoon KG, McManus DP. Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol. 2016;32:378–91.
CAS
PubMed
Google Scholar
Williams R. Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks. Int J Parasitol. 2001;31:1056–69.
CAS
PubMed
Google Scholar
Poulin R. Are there general laws in parasite ecology? Parasitology. 2007;134:763.
CAS
PubMed
Google Scholar
Rosenberg R. Malaria: some considerations regarding parasite productivity. Trends Parasitol. 2008;24:487–91.
PubMed
Google Scholar
Tang X, Huang G, Liu X, El-Ashram S, Tao G, Lu C, et al. An optimized DNA extraction method for molecular identification of coccidian species. Parasitol Res. 2018;117:655–64.
PubMed
Google Scholar
Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci. 2009;364:37–49.
PubMed
Google Scholar
Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host tolerance. Zoology. 2016;119:281–9.
PubMed
Google Scholar
Graham AL, Allen JE, Read AF. Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol Syst. 2005;36:373–97.
Google Scholar
Klemme I, Karvonen A. Vertebrate defense against parasites: interactions between avoidance, resistance, and tolerance. Ecol Evol. 2017;7:561–71.
PubMed
Google Scholar