Gullan PJ, Cranston PS. The insects. An outline of entomology. 4th ed. Oxford: Wiley-Blackwell; 2010.
Google Scholar
Baddi BK. Phylogeny and functional morphology of Diptera (flies). London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.90421.
Book
Google Scholar
Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.
CAS
PubMed
PubMed Central
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
CAS
PubMed
PubMed Central
Google Scholar
Chandy A, Thakur AS, Singh MP, Manigauha A. A review of neglected tropical diseases: filariasis. Asian Pac J Trop Med. 2011;4:581–6.
CAS
PubMed
Google Scholar
Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. JAMA. 2013;310:308–15.
CAS
PubMed
PubMed Central
Google Scholar
Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372:1231–9.
CAS
PubMed
Google Scholar
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika virus: history, emergence, biology, and prospects for control. Antivir Res. 2016;130:69–80.
CAS
PubMed
Google Scholar
World Health Organization (WHO). A global brief on vector-borne diseases. 2014. https://apps.who.int/iris/handle/10665/111008, Accessed 23 Jan 2021.
World Health Organization (WHO). Ethics and vector-borne diseases: WHO guidance. 2020. https://apps.who.int/iris/handle/10665/336075. Accessed 19 Jan 2021.
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000 Res. 2017;6:750.
Google Scholar
World Health Organization (WHO). Leishmaniasis. 2019. https://www.who.int/leishmaniasis. Accessed 09 Nov 2020.
Aksoy S, Buscher P, Lehane M, Solano P, Abbeele JVD. Human African trypanosomiasis control: achievements and challenges. PLoS Negl Trop Dis. 2017;11: e0005454.
PubMed
PubMed Central
Google Scholar
World Health Organization (WHO). Trypanosomiasis, human African (sleeping sickness). Updated February 2020. 2020. https://www.who.int/en/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness). Accessed 09 Nov 2020.
U.S. Center for Disease Control and Prevention (CDC). Malaria‘s impact worldwide. 25 Feb 2020. https://www.cdc.gov›malaria›impact. Accessed 09 Nov 2020.
Bern C. Chagas’ disease. N Engl J Med. 2015;373:456–66.
CAS
PubMed
Google Scholar
Lai O, Ho D, Glick S, Jagdeo J. Bed bugs and possible transmission of human pathogens: a systematic review. Arch Dermatol Res. 2016;308:531–8.
PubMed
PubMed Central
Google Scholar
Perilla-Henao LM, Casteel CL. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front Plant Sci. 2016;7:1163.
PubMed
PubMed Central
Google Scholar
Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett. 2018;365: fnx244.
Google Scholar
Guzmán C, Calderón A, Mattar S, Tadeu-Figuereido L, Salazar-Bravo J, Alvis-Guzmán N, et al. Eco epidemiology of alphaviruses and flaviviruses. In: Ennaji MM, et al., editors. Emerging and reemerging viral pathogens. Cordoba: Moulay Ennaji; 2020. p. 101–25.
Google Scholar
Pan American Health Organization/World Health Organization (PAHO/WHO). Response to the epidemic of Zika virus in the Americas, December 2015–2016. https://iris.paho.org/handle/10665.2/50608. Accessed 05 Dec 2020.
Organisation for Economic Co-operation and Development (OECD), Environment Directorate. Consensus document on the biology of mosquito Aedes aegypti, No. 65, ENV/JM/MONO(2018)23. 2018. www.oecd.org/science/biotrack/. Accessed 10 Dec 2020.
Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-NG L, et al. Alternative strategies for mosquito-borne arbovirus. PLoS Negl Trop Dis. 2019;13:e0007275.
PubMed
PubMed Central
Google Scholar
Dahmana H, Mediannikov O. Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens. 2020;9:310.
PubMed Central
Google Scholar
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PloS Negl Trop Dis. 2020;14(1):0007831.
Google Scholar
United States Department of Agriculture-Agricultural Research Service (USDA-ARS). A national road map for integrated pest management. 2018. https://www.ars.usda.gov/ARSUserFiles/OPMP/IPM%20Road%20Map%20FINAL.pdf. Accessed 14 Jan 2021.
Environmental Protection Agency (EPA). DDT ban takes effect. EPA press release on the ban of general use of the pesticide dichloro-diphenyl-trichloroethane (DDT). 31 Dec 1972. https://archive.epa.gov/epa/aboutepa/ddt-ban-takes-effect.html. Accessed 10 Jan 2020.
National Research Council. The life sciences: recent progress and application to human affairs. The world of biological research requirements for the future. Washington DC: The National Academies Press; 1970. https://doi.org/10.17226/9575.
Book
Google Scholar
Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 2015;149:70–85.
CAS
PubMed
Google Scholar
Riveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang M-C, Wondji CS. Insecticide resistance in malaria vectors: an update at a global scale. In: Manguin S, Dev V, editors. Towards malaria elimination—a leap forward. London: IntechOpen; 2018. p. 149–75. https://doi.org/10.5772/intechopen.78375.
Chapter
Google Scholar
Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.
CAS
PubMed
Google Scholar
Shaw WR, Catterrucia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2019;4(1):20–34.
CAS
PubMed
Google Scholar
Barratt BIP, Moran VC, Bigler F. The status of biological control and recommendations for improving uptake for the future. Biocontrol. 2018;63:155–67.
Google Scholar
Wilke ABB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors. 2015;8:342.
PubMed
PubMed Central
Google Scholar
Evans BR, Kotsakiozi P, Costa-da-Silva AL, Ioshino RS, Garziera L, Pedrosa MC, et al. Transgenic Aedes aegypti mosquitoes transfer genes into a natural population. Sci Rep. 2019;9:13047.
PubMed
PubMed Central
Google Scholar
Kassegne K, Zhou XN, Chen JH. Editorial: vectors and vector-borne parasitic diseases: infection, immunity, and evolution. Front Immunol. 2021;12:729415.
CAS
PubMed
PubMed Central
Google Scholar
Duffy PE, Gorres JP. Malaria vaccines since 2000: progress, priorities, products. npj Vaccines. 2020;5:48. https://doi.org/10.1038/s41541-020-0196-3.
Article
PubMed
PubMed Central
Google Scholar
Biswal S, Reynales H, Saez-Lloren X, Lopez P, Borja-Tabora C, Kosalaraksa P, et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N Engl J Med. 2019;381:2009–19.
CAS
PubMed
Google Scholar
Lecouturier V, Pavot V, Berry C. An optimized purified inactivated Zika vaccine—sustained immunogenicity and protection in cynomolgus macaques. npj Vaccines. 2020;5:19. https://doi.org/10.1038/s41541-020-0167-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning JE, Cantaert T. Time to micromanage the pathogen-host-vector interface: considerations for vaccine development. Vaccines. 2019;7(1):10.
CAS
PubMed Central
Google Scholar
Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397(10287):1809–18.
CAS
PubMed
PubMed Central
Google Scholar
Balfour H. EMA accepts regulatory submission for Takeda’s dengue vaccine candidate. Eur Pharm Rev. 2021. https://www.europeanpharmaceuticalreview.com/news/.
Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases. Int J Mol Sci. 2019;20(22):5748.
CAS
PubMed Central
Google Scholar
Pramanik PK, Alam MN, Chowdhury DR, Chakraborti T. Drug resistance in protozoan parasites: an incessant wrestle for survival. J Glob Antimicrob Resist. 2019;18:1–11.
PubMed
Google Scholar
Diakité SAS, Traoré K, Sanogo I, Clark TG, Campino S, Sangaré M, et al. A comprehensive analysis of drug resistance molecular markers and Plasmodium falciparum genetic diversity in two malaria endemic sites in Mali. Malar J. 2019;18:361.
PubMed
PubMed Central
Google Scholar
Gyapong JO, Owusu IO, da Costa Vroom FB. Elimination of lymphatic filariasis: current perspectives on mass drug administration. Res Rep Trop Med. 2018;2018:25–33. https://doi.org/10.2147/RRTM.S125204.
Article
Google Scholar
Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. Am J Public Health. 2019;109(3):387–92.
PubMed
PubMed Central
Google Scholar
Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
PubMed
PubMed Central
Google Scholar
Ricci I, Damiani C, Rossi P, Capone A, Scuppa P, Cappelli A, et al. Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases. J Appl Entomol. 2011;135:487–93.
Google Scholar
Rajashekhar M, Dharavath V, Savani AK, Raidu LC, Kalia V. Endosymbionts and paratransgenesis approach for pest management. J Progress Res Soc Sci. 2016;11(V):2822–6.
Google Scholar
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and their micribiota: a review. Front Microbiol. 2019;10:2036. https://doi.org/10.3389/fmicb.2019.02036.
Article
PubMed
PubMed Central
Google Scholar
Whitten MM, Shiao SH, Levashina EA. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol. 2006;28(4):121–30.
CAS
PubMed
Google Scholar
Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, et al. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors. 2016;9:140.
PubMed
PubMed Central
Google Scholar
Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite, Trypanosoma cruzi, in the vector. Exp Parasitol. 2004;107(1–2):89–96.
CAS
PubMed
Google Scholar
Ahmad NA, Vythilingam I, Lim YAL, Zabari NZAM, Lee HL. Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus. Am J Trop Med Hyg. 2017;96:148–56.
PubMed
PubMed Central
Google Scholar
Dobson SL, Marsland EJ, Veneti Z, Bourtzis K, O’Neill SL. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl Environ Microbiol. 2002;68(2):656–60.
CAS
PubMed
PubMed Central
Google Scholar
Da Silva GD, Iturbe-Ormaetxe I, Martins-da-Silva A, Telleria EL, Rocha MN, Traub-Csekö YM, et al. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors. 2019;12:33.
Google Scholar
Krafsur ES. Tsetse flies: genetics, evolution, and role as vectors. Infect Genet Evol. 2009;9:124–41.
CAS
PubMed
Google Scholar
Hofer U. New horizons for Wolbachia. Nat Rev Microbiol. 2017;15:66–7.
CAS
PubMed
Google Scholar
Kamtchum-Tatuene J, Makepeace BL, Benjamin L, Baylis M, Solomon T. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis. 2017;30(1):108–16.
PubMed
PubMed Central
Google Scholar
Niang EHA, Bassene H, Fenollar F, Mediannikov O. Biological control of mosquito-borne diseases: the potential of Wolbachia-based interventions in an IVM framework. J Trop Med. 2018;2018:1470459. https://doi.org/10.1155/2018/1470459.
Durovni B, Saraceni V, Eppinghaus A, Riback TIS, Moreira LA, Jewell NP, et al. The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Research. 2020;8:1328.
PubMed Central
Google Scholar
Flores HA, Taneja de Bruyne J, O’Donnell TB, Nhu VT, Giang NT, Trang HTX, et al. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 2020;16(4): e1008433.
PubMed
PubMed Central
Google Scholar
Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, et al. An elusive endosymbiont: does Wolbachia occur naturally in Aedes aegypti? Ecol Evol. 2020;10:1581–91.
PubMed
PubMed Central
Google Scholar
Yen P-S, Failloux A-B. A review: Wolbachia-based population replacement for mosquito control shares common points with gentically modified control processes. Pathogens. 2020;9:404.
PubMed Central
Google Scholar
Beard CB, Mason PW, Aksoy S, Tesh RB, Richards FF. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am J Trop Med Hyg. 1992;46(2):195–200.
CAS
PubMed
Google Scholar
Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today. 1993;9(5):179–83.
CAS
PubMed
Google Scholar
Beard CB, Durvasula RV, Richards FF. Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis. 1998;4:581–91.
CAS
PubMed
PubMed Central
Google Scholar
Beard CB, Dotson EM, Pennington PM, Eichler S, Cordon-Rosales C, Durvasula RV. Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol. 2001;31(5–6):621–7.
CAS
PubMed
Google Scholar
Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol. 2002;47:123–41.
CAS
PubMed
Google Scholar
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA. 1997;94(7):3274–8.
CAS
PubMed
PubMed Central
Google Scholar
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, et al. Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomol. 1999;13:115–9.
CAS
PubMed
Google Scholar
Durvasula RV, Kroger A, Goodwin M, Panackal A, Kruglov O, Taneja J, et al. Strategy for introduction of foreign genes into field populations of Chagas disease vectors. Ann Entomol Soc Am. 1999;92:937–43.
CAS
Google Scholar
Whitten MM, Facey PD, Del Sol R, Fernandez-Martinez LT, Evans MC, Mitchell JJ, et al. Symbiont-mediated RNA interference in insects. Proc R Soc B. 2016;283:20160042.
PubMed
PubMed Central
Google Scholar
Dotson EM, Plikaytis B, Shinnick TM. Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage. Infect Genet Evol. 2003;3(2):103–9.
CAS
PubMed
Google Scholar
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector-borne diseases. Int J Biol Sci. 2011;7(9):1334–44.
CAS
PubMed
PubMed Central
Google Scholar
Hurwitz I, Fieck A, Durvasula R. Antimicrobial peptide delivery strategies: use of recombinant antimicrobial peptides in paratransgenic control systems. Curr Drug Targets. 2012;13(9):1173–80. https://doi.org/10.2174/138945012802002366.
Article
CAS
PubMed
Google Scholar
Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health. 2013;107(6):285–92.
PubMed
PubMed Central
Google Scholar
Raharimalala FN, Boukraa S, Bawin T, Boyer S, Francis F. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates. Parasitol Res. 2016;115(4):1391–9.
PubMed
Google Scholar
Fieck A, Hurwitz I, Kang AS, Durvasula R. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342–7.
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Jacobs-Lorena M. Paratransgenesis applications: fighting malaria with engineered mosquito symbiotic bacteria. In: Wikel SK, Aksoy S, Dimopoulos G, editors. Vector microbiome and innate immunity of arthropods, vol. 1. Oxford: Elsevier; 2017. p. 219–34. https://doi.org/10.5772/intechopen.90421.
Chapter
Google Scholar
Hurwitz I, Fieck A, Klein N, Jose C, Kang A, Durvasula R. A paratransgenic strategy for the control of Chagas disease. Psyche. 2012;2012:178930. https://doi.org/10.1155/2012/178930.
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz. 2017;112(2):81–93.
PubMed
PubMed Central
Google Scholar
Allaband C, McDonald D, Vázquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA, et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol. 2019;17(2):218–30.
PubMed
Google Scholar
Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev. 2015;28(1):237–64.
CAS
PubMed
PubMed Central
Google Scholar
Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, Pondeville E. Fighting arbovirus transmission: natural and engineered control of vector competence in Aedes mosquitoes. Insects. 2015;6(1):236–78.
PubMed
PubMed Central
Google Scholar
Chandler JA, Liu RM, Bennett SN. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front Microbiol. 2015;6:185.
PubMed
PubMed Central
Google Scholar
Nanfack MF, Vernick KD. A systematic review of the natural virome of Anopheles mosquitoes. Viruses. 2018;10(5):222.
Google Scholar
Carlson J, Suchman E, Buchatsky L. Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res. 2006;68:361–92.
CAS
PubMed
Google Scholar
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, et al. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep. 2016;6:20979.
PubMed
PubMed Central
Google Scholar
Ren X, Hoiczyk E, Rasgon JL. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 2008;4(8):e1000135.
PubMed
PubMed Central
Google Scholar
Gu JB, Dong YQ, Peng HJ, Chen XG. A recombinant AeDNA containing the insect-specific toxin, BmK IT1, displayed an increasing pathogenicity on Aedes albopictus. Am J Trop Med Hyg. 2010;83:614–23.
CAS
PubMed
PubMed Central
Google Scholar
Johnson RM, Rasgon JL. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr Opin Insect Sci. 2018;28:90–7.
PubMed
PubMed Central
Google Scholar
Sun Y, Dong Y, Li J, Lai Z, Hao Y, Liu P, et al. Development of large-scale mosquito densovirus production by in vivo methods. Parasit Vectors. 2019;12:255.
PubMed
PubMed Central
Google Scholar
Moraes AML, Junqueira ACV, Celano V, Costa GL, Coura JR. Fungal flora of the digestive tract of Rhodnius prolixus, Rhodnius neglectus, Diptelanogaster maximus and Panstrongylus megistus, vectors of Trypanosoma cruzi, Chagas, 1909. Braz J Microbiol. 2004;35(4):288–91.
Google Scholar
Akhoundi M, Bakhtiari R, Guillard T, Baghaei A, Tolouei R, Sereno D, et al. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS ONE. 2012;7(11): e50259.
CAS
PubMed
PubMed Central
Google Scholar
Jayakrishnan L, Sudhikumar AV, Aneesh EM. Role of gut inhabitants on vectorial capacity of mosquitoes. J Vector Borne Dis. 2018;55(2):69–78.
PubMed
Google Scholar
Cappelli A, Valzano M, Cecarini V, Bozic J, Rossi P, Mensah P, et al. Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice. Parasit Vectors. 2019;12:329.
PubMed
PubMed Central
Google Scholar
Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep. 2016;6:22587.
CAS
PubMed
PubMed Central
Google Scholar
Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011;331(6020):1074–7.
CAS
PubMed
PubMed Central
Google Scholar
Rasgon JL. Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes. Future Microbiol. 2011;6(8):851–3.
PubMed
Google Scholar
Dong Y, Maria L, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog. 2018;14(3):e1006898.
PubMed
PubMed Central
Google Scholar
Moreira D, Pereira AM, Lopes AL, Coimbra S. The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins’ study. Mol Biol Rep. 2020;47:2315–25.
CAS
PubMed
Google Scholar
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, et al. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med. 2020;217(1):e20190682.
PubMed
Google Scholar
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol. 2018;9:2160.
PubMed
PubMed Central
Google Scholar
Burt A, Coulibaly M, Crisanti A, Diabate A, Kayondo JK. Gene drive to reduce malaria transmission in sub-Saharan Africa. J Responsible Innov. 2018;5(Suppl 1):66–80.
Google Scholar
Wilke A, Beier J, Benelli G. Transgenic mosquitoes—fact or fiction? Trends Parasitol. 2018;34(6):456–65.
PubMed
Google Scholar
Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–85.
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypi toll pathway controls dengue virus infection. PLoS Pathog. 2008;4(7):e1000098.
PubMed
PubMed Central
Google Scholar
Hentzschel F, Mitesser V, Fraschka SAK, Krzikalla D, Carrillo EH, Berkhout B, et al. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res. 2020;48(1):e2. https://doi.org/10.1093/nar/gkz927.
Article
CAS
PubMed
Google Scholar
Taracena ML, Oliveira PL, Almendares O, Umaña C, Lowenberger C, Dotson EM, et al. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl Trop Dis. 2015;9(2):e0003358.
PubMed
PubMed Central
Google Scholar
Abrieux A, Chiu JC. Oral delivery of dsRNA by microbes: beyond pest control. Commun Integr Biol. 2016;9(6):e1236163.
PubMed
PubMed Central
Google Scholar
Whitten M, Dyson P. Gene silencing in non-model insects: overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. BioEssays. 2017;39:1600247.
Google Scholar
Vogel E, Santos D, Mingels L, Verdonckt T-W, Broeck JV. RNA interference in insects: protecting beneficials and controlling pests. Front Physiol. 2019;10:1912.
Google Scholar
Asgari M, Ilbeigikhamsehnejad M, Rismani E, Djadid ND, Raz A. Molecular characterization of RNase III protein of Asaia sp. for developing a robust RNAi-based paratransgensis tool to affect the sexual life-cycle of Plasmodium or Anopheles fitness. Parasit Vectors. 2020;13:42.
CAS
PubMed
PubMed Central
Google Scholar
Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, Horak RD, et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367:573–6.
CAS
PubMed
PubMed Central
Google Scholar
Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol. 2006;36(9):683–93.
CAS
PubMed
PubMed Central
Google Scholar
Walshe DP, Lehane SM, Lehane MJ, Haines LR. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol. 2009;18:11–9.
CAS
PubMed
Google Scholar
Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001;263:103–12.
CAS
PubMed
Google Scholar
Wang S, Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 2017;357(6358):1399–402.
CAS
PubMed
Google Scholar
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109(31):12734–9.
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 2013;31(3):185–93. https://doi.org/10.1016/j.tibtech.2013.01.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreenivasamurthy SK, Dey G, Ramu M, Kumar M, Gupta MK, Mohanty AK, et al. A compendium of molecules involved in vector-pathogen interactions pertaining to malaria. Malar J. 2013;12:216.
PubMed
PubMed Central
Google Scholar
Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, et al. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog. 2013;9(11): e1003790.
PubMed
PubMed Central
Google Scholar
Dong Y, Simões ML, Dimopoulos G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. Sci Adv. 2020;6: eaay5898.
CAS
PubMed
PubMed Central
Google Scholar
Shane JL, Grogan CL, Cwalina C, Lampe DJ. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat Commun. 2018;9(1):4127.
PubMed
PubMed Central
Google Scholar
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016;100:1567–77.
CAS
PubMed
Google Scholar
Arora AK, Forshaw A, Miller TA, Durvasula R. A delivery system for field application of paratransgenic control. BMC Biotechnol. 2015;15:59.
PubMed
PubMed Central
Google Scholar
Arora AK, Miller TA, Durvasula R. Transmission of Pantoea agglomerans—a paratransgenic control agent—within a Homalodisca vitripennis population. J Appl Entomol. 2019;144:232–5.
Google Scholar
Kotnis B, Kuri J. Evaluating the usefulness of paratransgenesis for malaria control. Math Biosci. 2016;277:117–25.
PubMed
Google Scholar
Yin C, Sun P, Yu X, Wang P, Chen G. Roles of symbiotic microorganisms in arboviral infection of arthropod vectors. Trends Parasitol. 2020;36:607–15.
CAS
PubMed
Google Scholar
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012;8:e1002742.
PubMed
PubMed Central
Google Scholar
Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasit Vectors. 2011;4:77–85.
PubMed
PubMed Central
Google Scholar
Huang W, Wang S, Jacobs-Lorena M. Self-limiting paratransgenesis. PLoS Negl Trop Dis. 2020;14(8):e0008542.
CAS
PubMed
PubMed Central
Google Scholar
Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, et al. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2019;13(12): e0007883.
CAS
PubMed
PubMed Central
Google Scholar
Li J, Hanc M, Yu J. Simple paratransgenic mosquitoes models and their dynamics. Math Biosci. 2018;306:20–31.
PubMed
Google Scholar
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23(11):2727–39.
CAS
PubMed
PubMed Central
Google Scholar
Alfano N, Tagliapietra V, Rosso F, Manica M, Arnoldi D, Pindo M, Rizzoli A. Changes in microbiota across developmental stages of Aedes koreicus, an invasive mosquito vector in Europe: indications for microbiota-based control strategies. Front Microbiol. 2019;10:2832.
PubMed
PubMed Central
Google Scholar
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, et al. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep. 2019;9:12160.
PubMed
PubMed Central
Google Scholar
Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, et al. Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol. 2015;15:140.
PubMed
PubMed Central
Google Scholar
Seabourn P, Spafford H, Yoneishi N, Medeiros M. The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Negl Trop Dis. 2020;14(8):e0008615.
PubMed
PubMed Central
Google Scholar
Sharma P, Sharma S, Maurya RK, de Das T, Thomas T, Lata S, et al. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasit Vectors. 2014;7:235.
PubMed
PubMed Central
Google Scholar
Tchioffo MT, Boissière A, Abate L, Nsango SE, Bayibéki AN, Awono-Ambéné PH, et al. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front Microbiol. 2015;6:1500.
PubMed
Google Scholar
da Silva AF, Machado LC, de Paula MB, da Silva Pessoa Vieira CJ, de Morais Bronzoni RV, de Melo Santos MAV, et al. Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Sci Rep. 2020;10:18823. https://doi.org/10.1038/s41598-020-74883-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
CAS
PubMed
Google Scholar
Strand MR. Composition and functional roles of the gut microbiota in mosquitoes. Curr Opin Insect Sci. 2018;28:59–65.
PubMed
PubMed Central
Google Scholar
Chen S, Zhang D, Augustinos A, Doudoumis V, Mokhtar NB, Maiga H, et al. Multiple factors determine the structure of bacterial communities associated with Aedes albopictus under artificial rearing conditions. Front Microbiol. 2020;11:605. https://doi.org/10.3389/fmicb.2020.00605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Nair S. Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.
PubMed
PubMed Central
Google Scholar
Sharma P, Ran J, Chauhan C, Kumari S, Tevatiya S, Tanwee DD, et al. Altered gut microbiota and immunity defines Plasmodium vivax survival in Anopheles stephensi. Front Immunol. 2020;11:609.
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40:371–4.
PubMed
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5:e1000423.
PubMed
PubMed Central
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268–78.
PubMed
Google Scholar
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10(10):e1004398.
PubMed
PubMed Central
Google Scholar
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz. 2014;109(5):644–61.
PubMed
PubMed Central
Google Scholar
Dieme C, Rotureau B, Mitri C. Microbial pre-exposure and vectorial competence of Anopheles mosquitoes. Front Cell Infect Microbiol. 2017;7:508.
PubMed
PubMed Central
Google Scholar
Guégan M, Zouache K, Démichel C, Minard G, Van VT, Potier P, et al. The mosquito holobiont: fresh insight into mosquito–microbiota interactions. Microbiome. 2018;6(1):49.
PubMed
PubMed Central
Google Scholar
Romoli O, Gendrin M. The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors. 2018;11:200.
PubMed
PubMed Central
Google Scholar
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol. 2019;37:26–36.
PubMed
PubMed Central
Google Scholar
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12: 630438.
PubMed
PubMed Central
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasit Vectors. 2014;7:419.
PubMed
PubMed Central
Google Scholar
Dacey DP, Chain FJJ. The challenges of microbial control of mosquito-borne diseases due to the gut microbiome. Front Genet. 2020;11:504354. https://doi.org/10.3389/fgene.2020.504354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Wang S, Jacobs-Lorena M. Use of microbiota to fight mosquito-borne disease. Front Genet. 2020;11:196.
CAS
PubMed
PubMed Central
Google Scholar
Oliveira TMP, Sanabani SS, Sallum MAM. Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) associated with Nyssorhynchus braziliensis and Nyssorhynchus darlingi (Diptera: Culicidae). Rev Bras Entomol. 2020;64(2):e20190010.
Google Scholar
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. Microbiome. 2021;9:36.
PubMed
PubMed Central
Google Scholar
Rodríguez-Ruano SM, Juhaňáková E, Vávra J, Nováková E. Methodological insight into mosquito microbiome studies. Front Cell Infect Microbiol. 2020;10:86.
PubMed
PubMed Central
Google Scholar
Gendrin M, Christophides GK. The Anopheles mosquito microbiota and their impact on pathogen transmission. In: Manguin S, editor. Anopheles mosquitoes-new insights into malaria vectors. London: IntechOpen; 2013. p. 525–48.
Google Scholar
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011;75(3):377–89.
CAS
PubMed
Google Scholar
Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–50.
CAS
PubMed
Google Scholar
David MR, dos Santos LMB, Vicente ACP, Maciel-de-Freitas R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz. 2016;111(9):577–87.
PubMed
PubMed Central
Google Scholar
Demaio J, Pumpuni CB, Kent M, Beier JC. The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am J Trop Med Hyg. 1996;54(2):219–23.
CAS
PubMed
Google Scholar
Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, et al. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol. 1998;35:222–6.
CAS
PubMed
Google Scholar
Pidiyar VJ, Jangid K, Patole MS, Shouche Y. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S ribosomal RNA gene analysis. Am J Trop Med Hyg. 2004;70:597–603.
CAS
PubMed
Google Scholar
Rami A, Raz A, Zakeri S, Djadid ND. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit Vectors. 2018;11(1):367.
PubMed
PubMed Central
Google Scholar
Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81.
PubMed
Google Scholar
Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambene PH, Nsango SE, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol. 2014;28:715–24.
PubMed
Google Scholar
Villegas LM, Pimenta PLP. Metagenomics, paratransgenesis and the Anopheles microbiome: portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014;109(5):672–84.
PubMed
PubMed Central
Google Scholar
Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabiré RK, et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci Rep. 2016;6:24207.
CAS
PubMed
PubMed Central
Google Scholar
Kalappa DM, Subramani PA, Basavanna SK, Ghosh SK, Sundaramurthy V, Sreehari Uragayala S, et al. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections. Malar J. 2018;17:385.
CAS
PubMed
PubMed Central
Google Scholar
Tainchum K, Dupont C, Chareonviriyaphap T, Jumas-Bilak E, Bangs MJ, Manguin S. Bacterial microbiome in wild-caught Anopheles mosquitoes in Western Thailand. Front Microbiol. 2020;11:965.
PubMed
PubMed Central
Google Scholar
Nilsson LKJ, de Oliveira MR, Marinotti O, Rocha EM, Håkansson S, Tadei WP, et al. Characterization of bacterial communities in breeding waters of Anopheles darlingi in Manaus in the Amazon Basin malaria-endemic area. Microb Ecol. 2019;78:781–91.
PubMed
PubMed Central
Google Scholar
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis. 2017;11(2):e0005377.
PubMed
PubMed Central
Google Scholar
Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6(9):e24767.
CAS
PubMed
PubMed Central
Google Scholar
Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.
CAS
PubMed
PubMed Central
Google Scholar
Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, et al. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol. 2009;11(12):3252–64.
CAS
PubMed
Google Scholar
Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, et al. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol. 2010;76(22):7444–50.
CAS
PubMed
PubMed Central
Google Scholar
Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.
PubMed
Google Scholar
De Freece C, Damiani C, Valzano M, D’amelio S, Cappelli A, Ricci I, et al. Detection and isolation of the α-proteobacterium Asaia in Culex mosquitoes. Med Vet Entomol. 2013;28(4):438–42.
PubMed
Google Scholar
Manguin S, Ngo CT, Tainchum K, Juntarajumnong W, Chareonviriyaphap T, Michon AL, et al. Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in Southeast Asia. In: Manguin S, et al., editors. Anopheles mosquitoes: new insights into malaria vectors. IntechOpen: Croatia; 2013. p. 549–76.
Google Scholar
Ramos-Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Hattaway LM, Hsueh AN, et al. Metagenomic analysis of Aedes aegypti and Culex quinquefasciatus mosquitoes from Grenada West Indies. PLoS ONE. 2020;15(4):e0231047.
CAS
PubMed
PubMed Central
Google Scholar
Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, et al. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol. 2008;627:49–59.
CAS
PubMed
Google Scholar
Alonso DP, Mancini MV, Damiani C, Cappelli A, Ricci I, Alvarez MVN, et al. Genome reduction in the mosquito symbiont Asaia. Genome Biol Evol. 2019;11(1):1–10.
CAS
PubMed
Google Scholar
Mancini MV, Damiani C, Short SM, Cappelli A, Ulissi U, Capone A, et al. Inhibition of Asaia in adult mosquitoes causes male-specific mortality and diverse transcriptome changes. Pathogens. 2020;9(5):380.
CAS
PubMed Central
Google Scholar
Bongio NJ, Lampe DJ. Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal. PLoS ONE. 2015;10(12):e0143541.
PubMed
PubMed Central
Google Scholar
Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, et al. Asaia activates immune genes in mosquito eliciting an anti-Plasmodium response: implications in malaria control. Front Genet. 2019;10:836.
CAS
PubMed
PubMed Central
Google Scholar
Rossi P, Ricci I, Cappelli A, Damiani C, Ulissi U, Mancini MV, et al. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasit Vectors. 2015;8:278.
PubMed
PubMed Central
Google Scholar
Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P. Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control. Parasit Vectors. 2013;6(1):182.
PubMed
PubMed Central
Google Scholar
Terenius O, De Oliveira CD, Pinheiro WD, Tadei NP, James AA, Marinotti O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera : Culicidae) mosquitoes. J Med Entomol. 2008;45:1725.
CAS
PubMed
Google Scholar
Dinparast Djadid N, Jazayeri H, Raz A, Favia G, Ricci I, Zakeri S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS ONE. 2011;6(12):e28484.
PubMed
PubMed Central
Google Scholar
Correa LV. Estudo do Potencial Paratransgênico de Bactérias Cultiváveis Associadas ao Anopheles darlingi Root, 1926, Para Controle da Malária. PhD thesis. Manaus: PGSS–Biotecnologia e Recursos Naturais da Amazônia (Mestrado), Universidade do Estado do Amazonas; 2019. http://repositorioinstitucional.uea.edu.br//handle/riuea/2301.
Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg. 1996;54:214–8.
CAS
PubMed
Google Scholar
Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007;37(6):595–603.
CAS
PubMed
Google Scholar
Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 2011;13:4669–75.
Google Scholar
Mendiola SY, Civitello DJ, Gerardo NM. An integrative approach to symbiont-mediated vector control for agricultural pathogens. Curr Opin Insect Sci. 2020;39:57–62.
PubMed
Google Scholar
Dutkiewicz J, Mackiewicz B, Kinga Lemieszek M, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Ann Agric Environ Med. 2016;23(2):197–205.
CAS
PubMed
Google Scholar
Büyükcam A, Tuncer Ö, Gür D, Sancak B, Ceyhan M, Cengiz AB, et al. Clinical and microbiological characteristics of Pantoea agglomerans infection in children. J Infect Public Health. 2018;11(3):304–9.
PubMed
Google Scholar
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J. 2021;15:93–108.
CAS
PubMed
Google Scholar
Rocha EM. Seleção de espécies bacterianas cultiváveis, simbiontes de Anopheles darlingi (Root, 1926), para o controle da malária por paratransgênese. 2020. PhD thesis. Manaus: Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas (PPGBIOTEC-UFAM). https://tede.ufam.edu.br/bitstream/tede/7737/5/Tese_ElersonRocha_PPGBiotec.pdf.
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.
CAS
PubMed
PubMed Central
Google Scholar
Bai L, Wang L, Vega-Rodriguez J, Wang G, Wang S. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580.
PubMed
PubMed Central
Google Scholar
Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, Fukumoto S, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013;3:1641.
PubMed
PubMed Central
Google Scholar
Chen S, Blom J, Walker ED. Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front Microbiol. 2017;8:1483.
PubMed
PubMed Central
Google Scholar
Krafsur AM, Ghosh A, Brelsfoard CL. Phenotypic response of Wolbachia pipientis in a cell-free medium. Microorganisms. 2020;8:1060.
CAS
PubMed Central
Google Scholar
Reveillaud J, Bordenstein SR, Cruaud C, Shaiber A, Esen OC, Mylène Weill M, et al. The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat Commun. 2019;10:1051.
PubMed
PubMed Central
Google Scholar
Koosha M, Vatandoost H, Karimian F, Choubdar N, Aba MRI, Oshaghi MA. Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the fitness of Culex pipiens (Diptera: Culicidae) for paratransgenic and RNAi approaches. J Med Entomol. 2019;56(2):553–9.
CAS
PubMed
Google Scholar
Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb Ecol. 2019;78(1):185–94.
CAS
PubMed
Google Scholar
Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332(6031):855–8.
CAS
PubMed
PubMed Central
Google Scholar
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J. 2016;15(1):425.
PubMed
PubMed Central
Google Scholar
Dehghan H, Oshaghi MA, Moosa-Kazemi SH, Yakhchali B, Vatandoost H, Maleki-Ravasan N, et al. Dynamics of transgenic Enterobacter cloacae expressing green fluorescent protein defensin (GFP-D) in Anopheles stephensi under laboratory condition. J Arthropod Borne Dis. 2017;11(4):515–32.
PubMed
PubMed Central
Google Scholar
Gnambani EJ, Bilgo E, Sanou A, Dabiré RK, Diabaté A. Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity. Malar J. 2020;19:352.
CAS
PubMed
PubMed Central
Google Scholar
Saraiva RG, Fang J, Kang S, Anglero-Rodrıguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis. 2018;12(4):e0006443.
PubMed
PubMed Central
Google Scholar
Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol. 2015;81(6):2233–43.
CAS
PubMed
PubMed Central
Google Scholar
Frank T, Gody JC, Nguyen LB, Berthet N, Le Fleche-Mateos A, Bata P, et al. First case of Elizabethkingia anophelis meningitis in the Central African Republic. Lancet. 2013;381(9880):1876.
PubMed
Google Scholar
Khaligh FG, Vahedi M, Chavshin AR. Identification of symbiotic bacteria in the midgut of the medically important mosquito, Culiseta longiareolata (Diptera: Culicidae). BMC Res Notes. 2020;13:378.
Google Scholar
Gurung K, Wertheim B, Salles JF. The microbiome of pest insects: it is not just bacteria. Entomol Experim Appl. 2019;167:156–70.
Google Scholar
Giesbrecht D, Heschuk D, Wiens I, Boguski D, LaChance P, Whyard S. RNA interference is enhanced by knockdown of double-stranded RNases in the yellow fever mosquito Aedes aegypti. Insects. 2020;11:327.
PubMed Central
Google Scholar
Christiaens O, Niu J, Taning CNT. RNAi in insects: a revolution in fundamental research and pest control applications. Insects. 2020;11(7):415.
PubMed Central
Google Scholar
Gurgel-Gonçalves R, Komp E, Campbell LP, Khalighifar A, Mellenbruch J, Mendonc VJ, et al. Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the Virtual Vector Lab. Peer J. 2017;5:e3040.
PubMed
PubMed Central
Google Scholar
Teixeira ARL, Nascimento RJ, Sturm NR. Evolution and pathology in Chagas disease: a review. Mem Inst Oswaldo Cruz. 2006;101(5):463–91.
PubMed
Google Scholar
Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21(12):568–72.
PubMed
Google Scholar
Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)—a review. Mem Inst Oswaldo Cruz. 2010;105:605–10.
CAS
PubMed
Google Scholar
Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS ONE. 2012;7:e36591.
CAS
PubMed
PubMed Central
Google Scholar
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, et al. Rhodnius prolixus: from physiology by Wigglesworth to recent studiesof immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. J Insect Physiol. 2017;97:45–65.
CAS
PubMed
Google Scholar
Rodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša V, et al. Microbiomes of North American triatominae: the grounds for Chagas disease epidemiology. Front Microbiol. 2018;9:1167.
PubMed
PubMed Central
Google Scholar
Salcedo-Porras N, Umaña-Diaz C, Bitencourt ROB, Lowenberger C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms. 2020;8:1438.
CAS
PubMed Central
Google Scholar
Schaub GA. An update on the knowledge of parasite-vector interactions of Chagas disease. Res Rep Trop Med. 2021;12:63–76.
PubMed
PubMed Central
Google Scholar
Guarneri AA, Schaub GA. Interaction of triatomines, trypanosomes and microbiota. In: Guarneri AA, Lorenzo MG, editors. Triatominae—the biology of Chagas disease vectors. New York: Springer Nature; 2021. p. 345–86.
Google Scholar
Traverso L, Lavore A, Sierra I, Palacio V, Martinez-Barnetche J, Latorre-Estivalis JM, et al. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl Trop Dis. 2017;11(2):e0005313.
PubMed
PubMed Central
Google Scholar
Lima MS, Laport MS, Lorosa ES, Jurberg J, dos Santos KRN, da Silva Neto MAC, et al. Bacterial community composition in the salivary glands of triatomines (Hemiptera: Reduviidae). PLoS Negl Trop Dis. 2018;12(9):e0006739.
PubMed
PubMed Central
Google Scholar
Da Mota FF, Marinho LP, Moreira CJ, Lima MM, Mello CB, Garcia ES, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6(5):e1631.
PubMed
PubMed Central
Google Scholar
Gumiel M, da Mota FF, de Sousa RV, Sarquis O, Castro DP, Lima MM, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors. 2015;8:245.
PubMed
PubMed Central
Google Scholar
Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasit Vectors. 2016;9:636.
PubMed
PubMed Central
Google Scholar
Carels N, Gumiel M, da Mota FF, de Carvalho Moreira CJ, Azambuja P. A metagenomic analysis of bacterial microbiota in the digestive tract of triatomines. Bioinform Biol Insights. 2017;27(11):1177932217733422.
Google Scholar
Lopez-Ordonez T, Flores-Lopez CA, Montejo-Lopez R, Cruz-Hernandez A, Conners EE. Cultivable bacterial diversity in the gut of the Chagas disease vector Triatoma dimidiata: identification of possible bacterial candidates for a paratransgenesis approach. Front Ecol Evol. 2018;5:174.
Google Scholar
Oliveira JL, Cury JC, Gurgel-Goncalves R, Bahia AC, Monteiro FA. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl Trop Dis. 2018;12(8):e0006709.
PubMed
PubMed Central
Google Scholar
Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018;12(10):e0006730.
CAS
PubMed
PubMed Central
Google Scholar
Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S, Teh-Poot C, Herrera C, Gourbière S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep. 2018;8:4140.
PubMed
PubMed Central
Google Scholar
Montoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculate midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018;178:327–32.
CAS
PubMed
Google Scholar
Waltmann A, Willcox AC, Balasubramanian S, Mayori KB, Guerrero SM, Sanchez RSS, et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl Trop Dis. 2019;13(5):e0007383.
CAS
PubMed
PubMed Central
Google Scholar
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, et al. Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLoS ONE. 2020;15(11):e0240916.
CAS
PubMed
PubMed Central
Google Scholar
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, et al. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome. 2020;8:146.
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Xie H, Gao M, Huang P, Zhou H, Ma Y, et al. Dynamic of composition and diversity of gut microbiome in Triatoma rubrofasciata in different developmental stages and environmental conditions. Front Cell Infect Microbiol. 2020;10: 587708.
CAS
PubMed
PubMed Central
Google Scholar
Mann AE, Mitchell EA, Zhang Y, Curtis-Robles R, Thapa S, Hamer SA, et al. Comparison of the bacterial gut microbiome of North American Triatoma spp. with and without Trypanosoma cruzi. Front Microbiol. 2020;11:364.
PubMed
PubMed Central
Google Scholar
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the gut microbiota in Chagas disease: what do we know so far? Front Microbiol. 2020;11: 585857.
PubMed