World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 2020. https://www.who.int/publications-detail-redirect/9789240015791.
Ashine T, Teka H, Esayas E, Messenger LA, Chali W, Meerstein-Kessel L, et al. Anopheles stephensi as an emerging malaria vector in the Horn of Africa with high susceptibility to Ethiopian Plasmodium vivax and Plasmodium falciparum isolates. bioRxiv. 2020. https://doi.org/10.1101/2020.02.22.961284.
Article
Google Scholar
Sinka M, Pironon S, Massey N, Longbottom J, Hemingway J, Moyes C, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117(40):24900–8. https://doi.org/10.1073/pnas.2003976117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196–203. https://doi.org/10.1016/j.actatropica.2005.11.002.
Article
CAS
PubMed
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Hanafi-Bojd AA, Raeisi A, Nikpoor F. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran. Asian Pac J Trop Biomed. 2014;4(1):47–51. https://doi.org/10.1016/S2221-1691(14)60207-0.
Article
PubMed
PubMed Central
Google Scholar
Kotnis B, Kuri J. Evaluating the usefulness of paratransgenesis for malaria control. Math Biosci. 2016;277:117–25. https://doi.org/10.1016/j.mbs.2016.04.005.
Article
PubMed
Google Scholar
Raghavendra K, Barik TK, Reddy BPN, Sharma P, Dash AP. Malaria vector control: from past to future. Parasitol Res. 2011;108(4):757–79.
PubMed
Google Scholar
Enayati A, Hanafi-Bojd AA, Sedaghat MM, Zaim M, Hemingway J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar J. 2020;19(1):258. https://doi.org/10.1186/s12936-020-03335-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorouhi MA, Oshaghi MA, Vatandoost H, Enayati AA, Raeisi A, Abai MR, et al. Biochemical basis of cyfluthrin and DDT resistance in Anopheles stephensi (Diptera: Culicidae) in malarious area of Iran. J Arthropod Borne Dis. 2018;12(3):310–20.
PubMed
PubMed Central
Google Scholar
Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F. Resistance mechanisms of Anopheles stephensi (Diptera: Culicidae) to temephos. J Arthropod Borne Dis. 2014;9(1):71–83.
PubMed
PubMed Central
Google Scholar
Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 2017;357(6358):1399–402. https://doi.org/10.1126/science.aan5478.
Article
CAS
PubMed
Google Scholar
Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb Ecol. 2019;78(1):185–94. https://doi.org/10.1007/s00248-018-1289-7.
Article
CAS
PubMed
Google Scholar
Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2019;4(1):20–34. https://doi.org/10.1038/s41564-018-0214-7.
Article
CAS
PubMed
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit Vectors. 2015;8:36. https://doi.org/10.1186/s13071-015-0635-6.
Article
PubMed
PubMed Central
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasit Vectors. 2014;7:419. https://doi.org/10.1186/1756-3305-7-419.
Article
PubMed
PubMed Central
Google Scholar
Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology. 2007;134:1911–29.
CAS
PubMed
Google Scholar
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J. 2016;15:95. https://doi.org/10.1186/s12936-016-1163-3.
Article
PubMed
PubMed Central
Google Scholar
Sinden RE. Developing transmission-blocking strategies for malaria control. PLoS Pathog. 2017;13(7):e1006336. https://doi.org/10.1371/journal.ppat.1006336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bompard A, Da DF, Yerbanga RS, Biswas S, Kapulu M, Bousema T, et al. Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations. Sci Rep. 2017;7(1):6766. https://doi.org/10.1038/s41598-017-06130-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knols BG, Bossin HC, Mukabana WR, Robinson AS. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world. Am J Trop Med Hyg. 2007;77:232–42.
PubMed
Google Scholar
Zieler H, Keister DB, Dvorak JA, Ribeiro JM. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J Exp Biol. 2001;204:4157–67.
CAS
PubMed
Google Scholar
Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473:212–5.
CAS
PubMed
PubMed Central
Google Scholar
Gantza VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:6736–43.
Google Scholar
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA. 1997;94:3274–8.
CAS
PubMed
PubMed Central
Google Scholar
Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007;37:595–603.
CAS
PubMed
Google Scholar
Whitten MMA, Shiao SH. Levashina EA Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol. 2006;28:121–30.
CAS
PubMed
Google Scholar
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109:12734–9.
CAS
PubMed
PubMed Central
Google Scholar
Abraham EG, Jacobs-Lorena M. Mosquito midgut barriers to malaria parasite development. Insect Biochem Mol Biol. 2004;34:667–71.
CAS
PubMed
Google Scholar
Drexler AL, Vodovotz Y, Luckhart S. Plasmodium development in the mosquito: biology bottlenecks and opportunities for mathematical modeling. Trends Parasitol. 2008;24:333–6.
PubMed
PubMed Central
Google Scholar
Pumpuni CB, Beier MS, Nataro JP, Guers LD, Davis JR. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Exp Parasitol. 1993;77:195–9.
CAS
PubMed
Google Scholar
Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three Anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg. 1996;54:214–8.
CAS
PubMed
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5:e1000423.
PubMed
PubMed Central
Google Scholar
Meister S, Agianian B, Turlure F, Relógio A, Morlais I, Kafatos FC, et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 2009;5:e1000542.
PubMed
PubMed Central
Google Scholar
Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science. 2010;329:1353–5.
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327:1644–8.
CAS
PubMed
PubMed Central
Google Scholar
Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G. Mosquito immune defenses against Plasmodium infection. Dev Comp Immunol. 2010;34:387–95.
CAS
PubMed
Google Scholar
Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, et al. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol. 1998;35(3):222–6. https://doi.org/10.1093/jmedent/35.3.222.
Article
CAS
PubMed
Google Scholar
Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008;18:1087–8.
Google Scholar
Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.
PubMed
Google Scholar
De Freece C, Damiani C, Valzano M, D’Amelio S, Cappelli A, Ricci I, et al. Detection and isolation of the α-proteobacterium Asaia in Culex mosquitoes. Med Vet Entomol. 2014;28:438–42.
PubMed
Google Scholar
Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associates with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.
CAS
PubMed
PubMed Central
Google Scholar
Bongio NJ, Lampe DJ. Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal. PLoS ONE. 2015;10(12):e0143541.
PubMed
PubMed Central
Google Scholar
Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar R. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi an Asian malarial vector. BMC Microbiol. 2009;9:96.
PubMed
PubMed Central
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, et al. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012;121(2):129–34. https://doi.org/10.1016/j.actatropica.2011.10.015.
Article
PubMed
Google Scholar
Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40:371–4.
PubMed
Google Scholar
Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GB, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit Vectors. 2015;18(8):641.
Google Scholar
Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AH, et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasit Vectors. 2015;8:63. https://doi.org/10.1186/s13071-014-0517-3.
Article
PubMed
PubMed Central
Google Scholar
Akbari S, Oshaghi MA, Hashemi-Aghdam SS, Hajikhani S, Oshaghi G, Shirazi MH. Aerobic bacterial community of American Cockroach Periplaneta americana, a step toward finding suitable paratransgenesis candidates. J Arthropod Borne Dis. 2014;9(1):35–48.
PubMed
PubMed Central
Google Scholar
Eappen AG, Smith RC, Jacobs-Lorena M. Enterobacter-activated mosquito immune responses to plasmodium involve activation of SRPN6 in Anopheles stephensi. PLoS ONE. 2013;8(5):e62937.
CAS
PubMed
PubMed Central
Google Scholar
Conde R, Zamudio FZ, Rodríguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000;471:165–8.
CAS
PubMed
Google Scholar
Carballar-Lejarazú R, Rodríguez MH, de la Cruz H-H, Ramos-Castañeda J, Possani LD, Zurita-Ortega M, Reynaud-Garza E, Hernández-Rivas R, Loukeris T, Lycett G, Lanz-Mendoza H. Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci. 2008;65(19):3081–92. https://doi.org/10.1007/s00018-008-8250-8.
Article
CAS
PubMed
Google Scholar
Zhang C, He X, Gu Y, Zhou H, Cao J, Gao Q. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro. PLoS ONE. 2014;9(7):e103456. https://doi.org/10.1371/journal.pone.0103456.
Article
CAS
PubMed
PubMed Central
Google Scholar
François IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD, et al. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol. 2002;128(4):1346–58. https://doi.org/10.1104/pp.010794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabezas-Cruz A, Tonk M, Bouchut A, Pierrot C, Pierce RJ, Kotsyfakis M, et al. Antiplasmodial activity is an ancient and conserved feature of tick defensins. Front Microbiol. 2016;24(7):1682. https://doi.org/10.3389/fmicb.2016.01682.
Article
Google Scholar
El-Dirany R, Shahrour H, Dirany Z, Abdel-Sater F, Gonzalez-Gaitano G, Brandenburg K, et al. Activity of anti-microbial peptides (AMPs) against Leishmania and other parasites: an overview. Biomolecules. 2021;11(7):984. https://doi.org/10.3390/biom11070984.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011;331(6020):1074–7. https://doi.org/10.1126/science.1199115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basseri HR, Mohamadzadeh Hajipirloo H, Mohammadi Bavani M, Whitten MM. Comparative susceptibility of different biological forms of Anopheles stephensi to Plasmodium berghei ANKA strain. PLoS ONE. 2013;8(9):1–8.
Google Scholar
Sinden RE, Butcher GA, Beetsma AL. Maintenance of the Plasmodium berghei life cycle, In: Doolan DL (ed). Malaria methods and protocols. Totowa: Humana Press;, 2002. p. 25–40.
Dehghan H, Oshaghi MA, Mosa-Kazemi SH, Abai MR, Rafie F, Nateghpour M, et al. Experimental study on Plasmodium berghei, Anopheles Stephensi, and BALB/c mouse system: implications for malaria transmission blocking assays. Iran J Parasitol. 2018;13(4):549–59.
PubMed
PubMed Central
Google Scholar
Lacerda AF, Vasconcelos EA, Pelegrini PB, Grossi de Sa MF. Antifungal defensins and their role in plant defense. Front Microbiol. 2014;5:116. https://doi.org/10.3389/fmicb.2014.00116.
Article
PubMed
PubMed Central
Google Scholar
Létoffé S, Ghigo JM, Wandersman C. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol. 1994;176:5372–7. https://doi.org/10.1128/jb.176.17.5372-5377.
Article
PubMed
PubMed Central
Google Scholar
Sambrook JF, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Dehghan H, Oshaghi MA, Moosa-Kazemi SH, Yakhchali B, Vatandoost H, Maleki-Ravasan N, et al. Dynamics of transgenic Enterobacter cloacae expressing green fluorescent protein defensin (GFP-D) in Anopheles stephensi under laboratory condition. J Arthropod Borne Dis. 2017;11(4):515–32.
PubMed
PubMed Central
Google Scholar
Gouveia C, Asensi MD, Zahner V, Rangel EF, Oliveira SM. Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotrop Entomol. 2008;37:597–601.
PubMed
Google Scholar
Demaio J, Pumpuni CB, Kent M, Beier JC. The midgut bacterial flora of wild Äedes triseriatus, Culex pipiens and Psorophora columbiae mosquitoes. Am J Trop Med Hyg. 1996;54:219–23.
CAS
PubMed
Google Scholar
Kokoza V, Ahmed A, Shin SW, Okafor N, Zou Z, Raikhel AS. Blocking of Plasmodium transmission by cooperative action of cecropin a and defensin a in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA. 2010;107:8111–6. https://doi.org/10.1073/pnas.1003056107.
Article
PubMed
PubMed Central
Google Scholar
Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 2013;31(3):185–93.
CAS
PubMed
PubMed Central
Google Scholar
Vega-Rodríguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang S, Bongio NJ, et al. Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. Proc Natl Acad Sci USA. 2013;111(4):E492-500.
Google Scholar
Dillon RJ, El Kordy E, Lanee RP. The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. Ann Trop Med Parasitol. 1996;90:669–73.
CAS
PubMed
Google Scholar
Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol. 2004;107:89–96.
CAS
PubMed
Google Scholar