World Health Organization. Countries and territories certified malaria-free. https://www.who.int/malaria/areas/elimination/malaria-free-countries/en/. Accessed 30 Nov 2020.
European Centre for Disease Prevention and Control (ECDC). Malaria—annual epidemiological report for 2019. Stockholm: ECDC; 2021. https://www.ecdc.europa.eu/en/publications-data/malaria-annual-epidemiological-report-2019. Accessed 30 Nov 2020.
Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72. https://doi.org/10.1186/1756-3305-3-72.
Article
PubMed
PubMed Central
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasites Vectors. 2010;3:117. https://doi.org/10.1186/1756-3305-3-117.
Article
PubMed
PubMed Central
Google Scholar
Sinka ME, Bangs M, Manguin S, Theeraphap C, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89. https://doi.org/10.1186/1756-3305-4-89.
Article
PubMed
PubMed Central
Google Scholar
White GB. Malaria Geographical distribution of arthropod-borne diseases and their principal vectors. Geneva: World Health Organization, Division of Vector Biology and Control; 1989. p. 7–22.
Google Scholar
Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J. A global index representing the stability of malaria transmission. Am J Trop Med Hyg. 2004;70:486–98. https://doi.org/10.4269/ajtmh.2004.70.486.
Article
PubMed
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69. https://doi.org/10.1186/1756-3305-5-69.
Article
PubMed
PubMed Central
Google Scholar
Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117:24900–8. https://doi.org/10.1073/pnas.2003976117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jetten TH, Takken W. Anophelism without malaria in Europe: a review of the ecology and distribution of the genus Anopheles in Europe.Wageningen Agric Univ Pap. 1994;94:5.
Google Scholar
Ramsdale C, Snow K. Distribution of the genus Anopheles in Europe. Eur Mosq Bull. 2000;7:1–26.
Google Scholar
Kuhn KG, Campbell-Lendrum DH, Davies CR. A continental risk map for malaria mosquito (Diptera: Culicidae) vectors in Europe. J Med Entomol. 2002;39:621–30. https://doi.org/10.1603/0022-2585-39.4.621.
Article
PubMed
Google Scholar
The Malaria Atlas Project (MAP). https://malariaatlas.org/. Accessed 30 Nov 2020.
Beebe NW. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology. 2018;145:622–33. https://doi.org/10.1017/S0031182018000343.
Article
CAS
PubMed
Google Scholar
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6: e1000100. https://doi.org/10.1371/journal.pmed.1000100.
Article
PubMed
PubMed Central
Google Scholar
Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, et al. Developing global maps of the dominant anopheles vectors of human malaria. PLoS Med. 2010;7:e1000209. https://doi.org/10.1371/journal.pmed.1000209.
Article
PubMed
PubMed Central
Google Scholar
Nicolescu G, Linton Y-M, Vladimirescu A, Howard TM, Harbach RE. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull Entomol Res. 2004;94:525–35. https://doi.org/10.1079/ber2004330.
Article
CAS
PubMed
Google Scholar
Naumenko AN, Karagodin DA, Yurchenko AA, Moskaev AV, Martin OI, Baricheva EM, et al. Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes. 2020;11:165. https://doi.org/10.3390/genes11020165.
Article
CAS
PubMed Central
Google Scholar
Ramsdale C. Internal taxonomy of the Hyrcanus Group of Anopheles (Diptera: Culicidae) and its bearing on the incrimination of vectors of malaria in the west of the Palaearctic Region. Eur Mosq Bull. 2001;10:1–8.
Google Scholar
Ponçon N, Toty C, Kengne P, Alten B, Fontenille D. Molecular evidence for similarity between Anopheles hyrcanus (Diptera: Culicidae) and Anopheles pseudopictus (Diptera: Culicidae), sympatric potential vectors of malaria in France. J Med Entomol. 2008;45:576–80. https://doi.org/10.1603/0022-2585(2008)45[576:mefsba]2.0.co;2.
Article
PubMed
Google Scholar
PubMed. https://pubmed.ncbi.nlm.nih.gov. Accessed 30 Nov 2021.
Web of Science. https://apps.webofknowledge.com. Accessed 30 Nov 2021.
Scopus. https://www.scopus.com/search/form.uri?display=basic#basic. Accessed 3 Feb 2022.
Eurostat. Nomenclature of territorial units for statistics classification. https://ec.europa.eu/eurostat/web/nuts/background. Accessed 30 Nov 2020.
Almeida APG, Galão RP, Sousa CA, Novo MT, Parreira R, Pinto J, et al. Potential mosquito vectors of arboviruses in Portugal: species, distribution, abundance and West Nile infection. Trans R Soc Trop Med Hyg. 2008;102:823–32. https://doi.org/10.1016/j.trstmh.2008.03.011.
Article
CAS
PubMed
Google Scholar
Capinha C, Gomes E, Reis E, Rocha J, Sousa CA, Do Rosário VE, et al. Present habitat suitability for Anopheles atroparvus (Diptera, Culicidae) and its coincidence with former malaria areas in mainland Portugal. Geospat Health. 2009;3:177–87. https://doi.org/10.4081/gh.2009.219.
Article
PubMed
Google Scholar
Lourenço PM, Sousa CA, Seixas J, Lopes P, Novo MT, Almeida APG. Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal. J Vector Ecol. 2011;36:279–91. https://doi.org/10.1111/j.1948-7134.2011.00168.x.
Article
PubMed
Google Scholar
Romi R, Boccolini D, Di Luca M, La Rosa G, Marinucci M. Identification of the sibling species of the Anopheles maculipennis complex by heteroduplex analysis. Insect Mol Biol. 2000;9:509-13. https://doi.org/10.1046/j.1365-2583.2000.00213.x.
Talbalaghi A, Shaikevich E. Molecular approach for identification of mosquito species (Diptera: Culicidae) in Province of Alessandria, Piedmont, Italy. Eur J Entomol. 2011;108:35–40. https://doi.org/10.14411/eje.2011.004.
Article
CAS
Google Scholar
Vicente JL, Sousa CA, Alten B, Caglar SS, Falcutá E, Latorre JM, et al. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malar J. 2011;10:5. https://doi.org/10.1186/1475-2875-10-5.
Article
PubMed
PubMed Central
Google Scholar
Zamburlini R, Cargnus E, Zandigiacomo P. Mosquitoes (Diptera Culicidae) of Friuli Venezia Giulia (North-Eastern Italy): annotated checklist, geographical distribution and habitats of pre-imaginal stages. Redia. 2019;102:13–21. https://doi.org/10.19263/REDIA-102.19.02.
Article
Google Scholar
Calzolari M, Desiato R, Albieri A, Bellavia V, Bertola M, Bonilauri P, et al. Mosquitoes of the Maculipennis complex in Northern Italy. Sci Rep. 2021;11:6421. https://doi.org/10.1038/s41598-021-85442-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponçon N, Toty C, L’Ambert G, Le Goff G, Brengues C, Schaffner F, et al. Biology and dynamics of potential malaria vectors in southern France. Malar J. 2007;6:18. https://doi.org/10.1186/1475-2875-6-18.
Article
PubMed
PubMed Central
Google Scholar
Ponçon N, Toty C, L’Ambert G, Le Goff G, Brengues C, Schaffner F, et al. Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France. Med Vet Entomol. 2007;21:350–7. https://doi.org/10.1111/j.1365-2915.2007.00701.x.
Article
PubMed
Google Scholar
Takken W, Geene R, Adam W, Jetten TH, van der Velden JA. Distribution and dynamics of larval populations of Anopheles messeae and A. atroparvus in the delta of the rivers Rhine and Meuse, The Netherlands. Ambio. 2002;31:212–8. https://doi.org/10.1579/0044-7447-31.3.212.
Article
PubMed
Google Scholar
Bueno-Marí R, Bañeres AB, Peydró RJ. Biodiversity and larval habitat heterogeneity of mosquitoes (Diptera: Culicidae) in Northern Spain. Acta Zool Bulg. 2014;66:547–54.
Google Scholar
Šebesta O, Gelbič I, Minář J. Mosquitoes (Diptera: Culicidae) of the Lower Dyje River Basin (Podyjí) at the Czech-Austrian border. Open Life Sci. 2012;7:288–98. https://doi.org/10.2478/s11535-012-0013-8.
Article
Google Scholar
Šebesta O, Gelbič I, Peško J. Seasonal dynamics of mosquito occurrence in the Lower Dyje River Basin at the Czech-Slovak-Austrian border. Ital J Zool. 2013;80:125–38. https://doi.org/10.1080/11250003.2012.753119.
Article
Google Scholar
Blažejová H, Šebesta O, Rettich F, Mendel J, Čabanová V, Miterpáková M, et al. Cryptic species Anopheles daciae (Diptera: Culicidae) found in the Czech Republic and Slovakia. Parasitol Res. 2018;117:315–21. https://doi.org/10.1007/s00436-017-5670-0.
Article
PubMed
Google Scholar
Čabanová V, Miterpáková M, Valentová D, Blažejová H, Rudolf I, Stloukal E, et al. Urbanization impact on mosquito community and the transmission potential of filarial infection in central Europe. Parasit Vectors. 2018;11:261. https://doi.org/10.1186/s13071-018-2845-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kronefeld M, Dittmann M, Zielke D, Werner D, Kampen H. Molecular confirmation of the occurrence in Germany of Anopheles daciae (Diptera, Culicidae). Parasit Vectors. 2012;5:250. https://doi.org/10.1186/1756-3305-5-250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kronefeld M, Werner D, Kampen H. PCR identification and distribution of Anopheles daciae (Diptera, Culicidae) in Germany. Parasitol Res. 2014;113:2079–86. https://doi.org/10.1007/s00436-014-3857-1.
Article
PubMed
Google Scholar
Kampen H, Schäfer M, Zielke DE, Walther D. The Anopheles maculipennis complex (Diptera: Culicidae) in Germany: an update following recent monitoring activities. Parasitol Res. 2016;115:3281–94. https://doi.org/10.1007/s00436-016-5189-9.
Article
PubMed
Google Scholar
Lühken R, Czajka C, Steinke S, Jost H, Schmidt-Chanasit J, Pfitzner W, et al. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med Vet Entomol. 2016;30:144–54. https://doi.org/10.1111/mve.12161.
Article
PubMed
Google Scholar
Scholte EJ, Mars MH, Braks M, Den Hartog W, Ibanez-Justicia A, Koopmans M, et al. No evidence for the persistence of Schmallenberg virus in overwintering mosquitoes. Med Vet Entomol. 2014;28:110–5. https://doi.org/10.1111/mve.12010.
Article
CAS
PubMed
Google Scholar
Almeida APG, Freitas FB, Novo MT, Sousa CA, Rodrigues JC, Alves R, et al. Mosquito surveys and West Nile virus screening in two different areas of Southern Portugal, 2004–2007. Vector-borne Zoonotic Dis. 2010;10:673–80. https://doi.org/10.1089/vbz.2009.0245.
Article
PubMed
Google Scholar
Roiz D, Eritja R, Escosa R, Lucientes J, Marquès E, Melero-Alcíbar R, et al. A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species. J Vector Ecol. 2007;32:10–5.
Article
CAS
PubMed
Google Scholar
Sainz-Elipe S, Latorre J, Escosa R, Masià M, Fuentes M, Mas-Coma S, et al. Malaria resurgence risk in southern Europe: climate assessment in an historically endemic area of rice fields at the Mediterranean shore of Spain. Malar J. 2010;9:221. https://doi.org/10.1186/1475-2875-9-221.
Article
PubMed
PubMed Central
Google Scholar
Bueno-Marí R, Jiménez-Peydró R. Study of the malariogenic potential of Eastern Spain. Trop Biomed. 2012;29:39–50.
PubMed
Google Scholar
Bueno-Marí R, Jiménez-Peydró R. Anophelism in a former malaria area of northeastern Spain. J Arthropod Borne Dis. 2013;7:147–53.
PubMed
PubMed Central
Google Scholar
Roiz D, Ruiz S, Soriguer R, Figuerola J. Landscape effects on the presence, abundance and diversity of mosquitoes in Mediterranean wetlands. PLoS ONE. 2015;10: e0128112. https://doi.org/10.1371/journal.pone.0128112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romi R, Pontuale G, Ciufolini MG, Fiorentini G, Marchi A, Nicoletti L, et al. Potential vectors of West Nile virus following an equine disease outbreak in Italy. Med Vet Entomol. 2004;18:14–9. https://doi.org/10.1111/j.1365-2915.2004.0478.x.
Article
CAS
PubMed
Google Scholar
Danabalan R, Monaghan MT, Ponsonby DJ, Linton Y-M. Occurrence and host preferences of Anopheles maculipennis group mosquitoes in England and Wales. Med Vet Entomol. 2014;28:169–78. https://doi.org/10.1111/mve.12023.
Article
CAS
PubMed
Google Scholar
Brugman VA, England ME, Stoner J, Tugwell L, Harrup LE, Wilson AJ, et al. How often do mosquitoes bite humans in southern England? A standardised summer trial at four sites reveals spatial, temporal and site-related variation in biting rates. Parasit Vectors. 2017;10:420. https://doi.org/10.1186/s13071-017-2360-9.
Article
PubMed
PubMed Central
Google Scholar
Brugman VA, Hernández-Triana LM, England ME, Medlock JM, Mertens PPC, Logan JG, et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasit Vectors. 2017;10:163. https://doi.org/10.1186/s13071-017-2098-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brugman VA, Medlock JM, Logan JG, Wilson AJ, Lindsay SW, Fooks AR, et al. Bird-biting mosquitoes on farms in southern England. Vet Rec. 2018;183:474. https://doi.org/10.1136/vr.104830.
Article
PubMed
PubMed Central
Google Scholar
Ventim R, Ramos JA, Osório H, Lopes RJ, Pérez-Tris J, Mendes L. Avian malaria infections in western European mosquitoes. Parasitol Res. 2012;111:637–45. https://doi.org/10.1007/s00436-012-2880-3.
Article
PubMed
Google Scholar
Hernandes-Traina LM, Brugman VA, Prosser SWJ, Weland C, Nikolova N, Thorne L, et al. Molecular approaches for blood meal analysis and species identification of mosquitoes (Insecta: Diptera: Culicidae) in rural locations in southern England, United Kingdom. Zootaxa. 2017;4250:67–76. https://doi.org/10.11646/zootaxa.4250.1.5.
Article
Google Scholar
Roiz D, Roussel M, Munoz J, Ruiz S, Soriguer R, Figuerola J. Efficacy of mosquito traps for collecting potential West Nile mosquito vectors in a natural Mediterranean wetland. Am J Trop Med Hyg. 2012;86:642–8. https://doi.org/10.4269/ajtmh.2012.11-0326.
Article
PubMed
PubMed Central
Google Scholar
Martínez-de la Puente J, Muñoz J, Capelli G, Montarsi F, Soriguer R, Arnoldi D, et al. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malar J. 2015;14:32. https://doi.org/10.1186/s12936-015-0571-0.
Article
PubMed
PubMed Central
Google Scholar
Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J. Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malar J. 2013;12:109. https://doi.org/10.1186/1475-2875-12-109.
Article
PubMed
PubMed Central
Google Scholar
De Zulueta J, Ramsdale CD, Coluzzi M. Receptivity to malaria in Europe. Bull World Health Organ. 1975;52:109–11.
PubMed
PubMed Central
Google Scholar
Ramsdale CD, Coluzzi M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia. 1975;17:39–48.
CAS
PubMed
Google Scholar
Daskova NG, Rasnicyn SP. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. Bull World Health Organ. 1982;60:893–7.
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro H, Batista JL, Ramos HC, Pires CA, Champalimaud JL, Costa JM, et al. An attempt to infect An. atroparvus from Portugal with African Plasmodium falciparum. Rev Port Doenç Infec. 1989;12:81–2.
Google Scholar
Van Dorp L, Gelabert P, Rieux A, De Manuel M, De-Dios T, Gopalakrishnan S, et al. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol Biol Evol. 2020;37:773–85. https://doi.org/10.1093/molbev/msz264.
Article
CAS
PubMed
Google Scholar
Cuadros J, Calvente MJ, Benito A, Arévalo J, Calero MA, Segura J, et al. Plasmodium ovale malaria acquired in Central Spain. Emerg Infect Dis. 2002;8:1506–8. https://doi.org/10.3201/eid0812.020105.
Article
PubMed
PubMed Central
Google Scholar
Balenghien T, Fouque F, Sabatier P, Bicout DJ. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J Med Entomol. 2006;43:936–46. https://doi.org/10.1603/0022-2585(2006)43[936:hbahba]2.0.co;2.
Article
CAS
PubMed
Google Scholar
Cailly P, Balenghien T, Ezanno P, Fontenille D, Toty C, Tran A. Role of the repartition of wetland breeding sites on the spatial distribution of Anopheles and Culex, human disease vectors in southern France. Parasit Vectors. 2011;4:65. https://doi.org/10.1186/1756-3305-4-65.
Article
PubMed
PubMed Central
Google Scholar
Poulin B, Lefebvre G, Muranyi-Kovacs C, Hilaire S. Mosquito traps: an innovative, environmentally friendly technique to control mosquitoes. Int J Environ Res Public Health. 2017;14:313. https://doi.org/10.3390/ijerph14030313.
Article
PubMed Central
Google Scholar
Aldemir A, Bedir H, Demirci B, Alten B. Biting activity of mosquito species (Diptera: Culicidae) in the Turkey-Armenia border area, Ararat Valley. Turkey J Med Entomol. 2010;47:22–7. https://doi.org/10.1603/033.047.0103.
Article
PubMed
Google Scholar
Alkan SS, Aldemir A. Seasonal dynamics of mosquitoes (Diptera: Culicidae) in animal barns and houses in Aras Valley, Turkey. Kafkas Univ Vet Fak Derg. 2010;16:43–8.
Google Scholar
Öncü C, Brinkmann A, Günay F, Kar S, Öter K, Sarıkaya Y, et al. West Nile virus, Anopheles flavivirus, a novel flavivirus as well as Merida-like rhabdovirus Turkey in field-collected mosquitoes from Thrace and Anatolia. Infect Genet Evol. 2018;57:36–45. https://doi.org/10.1016/j.meegid.2017.11.003.
Article
PubMed
Google Scholar
Übleis SS, Cuk C, Nawratil M, Butter J, Schoener E, Obwaller AG, et al. Xenomonitoring of mosquitoes (Diptera: Culicidae) for the presence of filarioid helminths in Eastern Austria. Can J Infect Dis Med Microbiol. 2018;18:6. https://doi.org/10.1155/2018/9754695.
Article
Google Scholar
Gadzhieva SS. Emergence and daytime resting sites in the malarial mosquito Anopheles hyrcanus (Culicidae) from the Daghestan lowland. Entomol Rev. 2007;87:1325–7. https://doi.org/10.1134/S0013873807090217.
Article
Google Scholar
Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl CH, et al. Mosquitoes and their control. 2nd ed. Berlin: Springer; 2010.
Book
Google Scholar
Tran A, Ponçon N, Toty C, Linard C, Guis H, Ferré J-B, et al. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in southern France. Int J Health Geogr. 2008;7:9. https://doi.org/10.1186/1476-072X-7-9.
Article
PubMed
PubMed Central
Google Scholar
L’Ambert G, Ferré J-B, Schaffner F, Fontenille D. Comparison of different trapping methods for surveillance of mosquito vectors of West Nile virus in Rhône Delta, France. J Vector Ecol. 2012;37:269–75. https://doi.org/10.1111/j.1948-7134.2012.00227.x.
Article
PubMed
Google Scholar
Šebesta O, Halouzka J, Hubálek Z, Juřicová Z, Rudolf I, Šikutová S, et al. Mosquito (Diptera: Culicidae) fauna in an area endemic for West Nile virus. J Vector Ecol. 2010;35:156–62. https://doi.org/10.1111/j.1948-7134.2010.00042.x.
Article
PubMed
Google Scholar
Šebesta O, Gelbič I, Peško J. Daily and seasonal variation in the activity of potential vector mosquitoes. Open Life Sci. 2011;6:422–30. https://doi.org/10.2478/s11535-011-0019-7.
Article
Google Scholar
Sulesco TM, Toderas LG, Uspenskaia IG, Toderas IK. Larval habitats diversity and distribution of the mosquito (Diptera: Culicidae) species in the Republic of Moldova. J Med Entomol. 2015;52:1299–308. https://doi.org/10.1093/jme/tjv142.
Article
PubMed
Google Scholar
Zana B, Kemenesi G, Antal L, Foldes F, Oldal M, Banyai K, et al. Molecular traces of a putative novel insect flavivirus from Anopheles hyrcanus mosquito species in Hungary. Acta Virol. 2017;61:127–9. https://doi.org/10.4149/av201701127.
Article
CAS
PubMed
Google Scholar
Zahar AR, World Health Organization, Division of Vector Biology and Control & World Health Organization, Malaria Action Programme. Vector bionomics in the epidemiology and control of malaria/prepared by A. R. Zahar. Pt. 1, The WHO African Region and the Southern WHO Eastern Mediterranean Region. Geneva: World Health Organization. 1985. https://apps.who.int/iris/handle/10665/62183. Accessed 30 Nov 2020.
Onori E, Nushin MK, Cullen JE, Yakubi GH, Mohammed K, Christal F. An epidemiological assessment of the residual effect of DDT on Anopheles hyrcanus s.l. and An. pulcherrimus (Theobald) in the North Eastern region of Afghanistan. Trans R Soc Trop Med Hyg. 1975;69:236–42. https://doi.org/10.1016/0035-9203(75)90161-3.
Article
CAS
PubMed
Google Scholar
Faulde MK, Hoffmann R, Fazilat KM, Hoerauf A. Malaria reemergence in northern Afghanistan. Emerg Infect Dis. 2007;13:1402–4. https://doi.org/10.3201/eid1309.061325.
Article
PubMed
PubMed Central
Google Scholar
Seidel B, Silbermayr K, Kolodziejek J, Indra A, Nowotny N, Allerberger F. Detection of Plasmodium sp.-infested Anopheles hyrcanus (Pallas 1771) (Diptera: Culicidae) in Austria, 2012. Wien Klin Wochenschr. 2013;125:139–43. https://doi.org/10.1007/s00508-013-0331-5.
Article
PubMed
Google Scholar
Toty C, Barré H, Le Goff G, Larget-Thiéry I, Rahola N, Couret D, et al. Malaria risk in Corsica, former hot spot of malaria in France. Malar J. 2010;9:231. https://doi.org/10.1186/1475-2875-9-231.
Article
PubMed
PubMed Central
Google Scholar
Di Luca M, Boccolini D, Marinucci M, Romi R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J Med Entomol. 2004;41:582–6. https://doi.org/10.1603/0022-2585-41.4.582.
Article
PubMed
Google Scholar
Foxi C, Puggioni G, Meloni G, Rossi R, Rocchigiani AM, Vento L, et al. Entomological surveillance of Zika virus in Sardinia, Italy, 2016. Vet Ital. 2018;54:243–9. https://doi.org/10.12834/VetIt.1303.7208.2.
Article
PubMed
Google Scholar
Boccolini D, Toma L, Luca MD, Severini F, Cocchi M, Bella A, et al. Impact of environmental changes and human-related factors on the potential malaria vector, Anopheles labranchiae (Diptera: Culicidae), in Maremma, Central Italy. J Med Entomol. 2012;49:833–42. https://doi.org/10.1603/me11252.
Article
CAS
PubMed
Google Scholar
Boccolini D, Menegon M, Di Luca M, Toma L, Severini F, Marucci G, et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health. 2020;20:857. https://doi.org/10.1186/s12889-020-08748-9.
Article
PubMed
PubMed Central
Google Scholar
Ivanescu M-L, Acatrinei D, Pavel I, Sulesco T, Miron L. PCR identification of five species from the Anopheles maculipennis complex (Diptera: Culicidae) in North-Eastern Romania. Acta Parasitol. 2015;60:283–9. https://doi.org/10.1515/ap-2015-0040.
Article
CAS
PubMed
Google Scholar
Di Luca M, Boccolini D, Severini F, Toma L, Barbieri FM, Massa A, et al. A 2-year entomological study of potential malaria vectors in Central Italy. Vector-Borne Zoonotic Dis. 2009;9:703–11. https://doi.org/10.1089/vbz.2008.0129.
Article
PubMed
Google Scholar
Romi R, Boccolini D, Vallorani R, Severini F, Toma L, Cocchi M, et al. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar J. 2012;11:98. https://doi.org/10.1186/1475-2875-11-98.
Article
PubMed
PubMed Central
Google Scholar
Baldari M, Tamburro A, Sabatinelli G, Romi R, Severini C, Cuccagna G, et al. Malaria in Maremma, Italy. Lancet. 1998;351:1246–7. https://doi.org/10.1016/S0140-6736(97)10312-9.
Article
CAS
PubMed
Google Scholar
Armengaud A, Legros F, Quatresous I, Barre H, Valayer P, Fanton Y, et al. A case of autochthonous Plasmodium vivax malaria, Corsica, August 2006. Euro Surveill. 2006;11:e061116.3. https://doi.org/10.2807/esw.11.46.03081-en.
Article
CAS
PubMed
Google Scholar
Romi R, Boccolini D, Menegon M, Rezza G. Probable autochthonous introduced malaria cases in Italy in 2009–2011 and the risk of local vector-borne transmission. Euro Surveill. 2012;17:20325. https://doi.org/10.2807/ese.17.48.20325-en.
Article
PubMed
Google Scholar
Novikov YM, Vaulin OV. Expansion of Anopheles maculipennis s.s. (Diptera: Culicidae) to northeastern Europe and northwestern Asia: causes and consequences. Parasit Vectors. 2014;7:389. https://doi.org/10.1186/1756-3305-7-389.
Article
PubMed
PubMed Central
Google Scholar
Tagliapietra V, Arnoldi D, Di Luca M, Toma L, Rizzoli A. Investigation on potential malaria vectors (Anopheles spp.) in the Province of Trento, Italy. Malar J. 2019;18:151. https://doi.org/10.1186/s12936-019-2785-z.
Article
PubMed
PubMed Central
Google Scholar
Culverwell CL. A report on the mosquitoes of mainland Åland, southwestern Finland and revised list of Finnish mosquitoes. Med Vet Entomol. 2018;32:145–54. https://doi.org/10.1111/mve.12272.
Article
CAS
PubMed
Google Scholar
Culverwell CL, Vapalahti OP, Harbach RE. Anopheles daciae, a new country record for Finland. Med Vet Entomol. 2020;34:145–50. https://doi.org/10.1111/mve.12431.
Article
CAS
PubMed
Google Scholar
Culverwell CL, Uusitalo RJ, Korhonen EM, Vapalahti OP, Huhtamo E, Harbach RE. The mosquitoes of Finland: updated distributions and bionomics. Med Vet Entomol. 2021;35:1–29. https://doi.org/10.1111/mve.12475.
Article
CAS
PubMed
Google Scholar
Linton Y-M, Samanidou-Voyadjoglou A, Harbach RE. Ribosomal ITS2 sequence data for Anopheles maculipennis and An. messeae in northern Greece, with a critical assessment of previously published sequences. Insect Mol Biol. 2002;11:379–83. https://doi.org/10.1046/j.1365-2583.2002.00338.x.
Article
CAS
PubMed
Google Scholar
Linton Y-M, Smith L, Koliopoulos G, Samanidou-Voyadjoglou A, Zounos AK, Harbach RE. Morphological and molecular characterization of Anopheles (Anopheles) maculipennis Meigen, type species of the genus and nominotypical member of the Maculipennis Complex. Syst Entomol. 2003;28:39–55. https://doi.org/10.1046/j.1365-3113.2003.00198.x.
Article
Google Scholar
Simsek FM, Ulger C, Akiner MM, Tuncay SS, Kiremit F, Bardakci F. Molecular identification and distribution of Anopheles maculipennis complex in the Mediterranean region of Turkey. Biochem Syst Ecol. 2011;39:258–65. https://doi.org/10.1016/j.bse.2011.08.010.
Article
CAS
Google Scholar
Sevgili E, Simsek FM. Distribution pattern and molecular identification of Anopheles maculipennis complex in eight river basins of Anatolia, Turkey. North West J Zool. 2012;8:223–31.
Google Scholar
Kampen H, Proft J, Etti S, Maltezos E, Pagonaki M, Maier WA, et al. Individual cases of autochthonous malaria in Evros Province, northern Greece: entomological aspects. Parasitol Res. 2003;89:252–8. https://doi.org/10.1007/s00436-002-0746-9.
Article
PubMed
Google Scholar
Kavran M, Zgomba M, Weitzel T, Petric D, Manz C, Becker N. Distribution of Anopheles daciae and other Anopheles maculipennis complex species in Serbia. Parasitol Res. 2018;117:3277–87. https://doi.org/10.1007/s00436-018-6028-y.
Article
PubMed
PubMed Central
Google Scholar
Akiner MM, Ekşi E. Impact of environmental factors on Anopheles maculipennis complex (Diptera: Culicidae) populations in three localities of Turkey. Int J Mosq Res. 2016;52:52–8.
Google Scholar
Linton Y-M, Smith L, Koliopoulos G, Zounos AK, Samanidou-Voyadjoglou A, Patsoula E, et al. The Anopheles (Anopheles) maculipennis complex (Diptera: Culicidae) in Greece. J Nat Hist. 2007;41:2683–99. https://doi.org/10.1080/00222930701403255.
Article
Google Scholar
Heym EC, Kampen H, Schäfer M, Walther D. Mosquito bloodmeal preferences in two zoological gardens in Germany. Med Vet Entomol. 2019;33:203–12. https://doi.org/10.1111/mve.12350.
Article
CAS
PubMed
Google Scholar
Romi R, Boccolini D, Hovanesyan I, Grigoryan G, Luca MD, Sabatinelli G. Anopheles sacharovi (Diptera: Culicidae): a reemerging malaria vector in the Ararat Valley of Armenia. J Med Entomol. 2002;39:446–50. https://doi.org/10.1603/0022-2585-39.3.446.
Article
CAS
PubMed
Google Scholar
Dakic D, Kulisic Z, Stajkovic N, Pelemis M, Cobeljic M, Stanimirovic Z, et al. Ecology of Anopheles mosquitoes in Belgrade area: estimating vector potential for malaria retransmission. Acta Vet Beogr. 2008;58:601–14. https://doi.org/10.2298/avb0806603d.
Article
Google Scholar
Bruce-Chwatt LJ, de Zulueta J. The rise and fall of malaria in Europe. Oxford: Univ. Press; 1980.
Google Scholar
Bezzhonova OV, Goryacheva II. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in Anopheles messeae (Diptera: Culicidae). J Med Entomol. 2008;45:337–41. https://doi.org/10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2.
Article
CAS
PubMed
Google Scholar
Lilja T, Eklöf D, Jaenson TGT, Lindström A, Terenius O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med Vet Entomol. 2020;34:364–8. https://doi.org/10.1111/mve.12436.
Article
CAS
PubMed
Google Scholar
Smitz N, De Wolf K, Gheysen A, Deblauwe I, Vanslembrouck A, Meganck K, et al. DNA identification of species of the Anopheles maculipennis complex and first record of An. daciae in Belgium. Med Vet Entomol. 2021;35:442–50. https://doi.org/10.1111/mve.12519.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaulin OV, Karagodin DA, Novgorodova TA, Glupov VV. Analysis of Anopheles messeae s.l. intron gene polymorphism associated with imidacloprid resistance. J Vector Ecol. 2020;45:220–32. https://doi.org/10.1111/jvec.12393.
Article
PubMed
Google Scholar
Weitzel T, Gauch C, Becker N. Identification of Anopheles daciae in Germany through ITS2 sequencing. Parasitol Res. 2012;111:2431–8. https://doi.org/10.1007/s00436-012-3102-8.
Article
PubMed
Google Scholar
Kronefeld M, Kampen H, Sassnau R, Werner D. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors. 2014;7:30. https://doi.org/10.1186/1756-3305-7-30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czajka C, Weitzel T, Kaiser A, Pfitzner WP, Becker N. Species composition, geographical distribution and seasonal abundance of the Anopheles maculipennis complex along the Upper Rhine, Germany. Parasitol Res. 2020;119:75–84. https://doi.org/10.1007/s00436-019-06551-z.
Article
CAS
PubMed
Google Scholar
Werner D, Kowalczyk S, Kampen H. Nine years of mosquito monitoring in Germany, 2011–2019, with an updated inventory of German culicid species. Parasitol Res. 2020;119:2765–74. https://doi.org/10.1007/s00436-020-06775-4.
Article
PubMed
PubMed Central
Google Scholar
Linton Y-M, Lee A, Curtis C. Discovery of a third member of the Maculipennis group in SW England. J Eur Mosq Control Assoc. 2005;19:5–9.
Google Scholar
Rydzanicz K, Czułowska A, Manz C, Jawień P. First record of Anopheles daciae (Linton, Nicolescu & Harbach, 2004) in Poland. J Vector Ecol. 2017;42:196–9. https://doi.org/10.1111/jvec.12257.
Article
PubMed
Google Scholar
Fyodorova MV, Savage HM, Lopatina JV, Bulgakova TA, Ivanitsky AV, Platonova OV, et al. Evaluation of potential West Nile virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. J Med Entomol. 2006;43:552–63. https://doi.org/10.1603/0022-2585(2006)43[552:eopwnv]2.0.co;2.
Article
PubMed
Google Scholar
Snow K, Medlock JM. The mosquitoes of Epping Forest, Essex, UK. J Eur Mosq Control Assoc. 2008;26:9–17.
Google Scholar
Brugman VA, Hernández-Triana LM, Prosser SWJ, Weland C, Westcott DG, Fooks AR, et al. Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK. Parasites Vectors. 2015;8:421. https://doi.org/10.1186/s13071-015-1034-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Möhlmann TWR, Wennergren U, Tälle M, Favia G, Damiani C, Bracchetti L, et al. Community analysis of the abundance and diversity of mosquito species (Diptera: Culicidae) in three European countries at different latitudes. Parasit Vectors. 2017;10:510. https://doi.org/10.1186/s13071-017-2481-1.
Article
PubMed
PubMed Central
Google Scholar
Artemiev MM. Anopheles mosquito—main malaria vectors in the USSR. In: International scientific project on ecologically safe methods for control of malaria and its vectors. International scientific project on ecologically safe methods for control of malaria and its vectors. 1980. Collected Lectures 2. p. 45–71.
Sedaghat MM, Linton Y-M, Nicolescu G, Smith L, Koliopoulos G, Zounos AK, et al. Morphological and molecular characterization of Anopheles (Anopheles) sacharovi Favre, a primary vector of malaria in the Middle East. Syst Entomol. 2003;28:241–56. https://doi.org/10.1046/j.1365-3113.2003.00211.x.
Article
Google Scholar
Yurttas H, Alten B. Geographic differentiation of life table attributes among Anopheles sacharovi (Diptera: Culicidae) populations in Turkey. J Vector Ecol. 2006;31:275–84. https://doi.org/10.3376/1081-1710(2006)31[275:gdolta]2.0.co;2.
Article
PubMed
Google Scholar
Tavşanoğlu N, Çağlar SS. The vectorial capacity of Anopheles sacharovi in the malaria endemic area of Şanlıurfa, Turkey. J Eur Mosq Control Assoc. 2008;28:18–23.
Google Scholar
Yavaşoglu Sİ, Fatih CÜ, Şimşek M. The first implementation of allele-specific primers for detecting the knockdown and acetylcholinesterase target site mutations in malaria vector, Anopheles sacharovi. Pestic Biochem Physiol. 2021;171: 104746. https://doi.org/10.1016/j.pestbp.2020.104746.
Article
CAS
PubMed
Google Scholar
Özbilgin A, Topluoglu S, Es S, Islek E, Mollahaliloglu S, Erkoc Y. Malaria in Turkey: successful control and strategies for achieving elimination. Acta Trop. 2011;120:15–23. https://doi.org/10.1016/j.actatropica.2011.06.011.
Article
Google Scholar
Danis K, Baka A, Lenglet A, Van Bortel W, Terzaki I, Tseroni M, et al. Autochthonous Plasmodium vivax malaria in Greece, 2011. Euro Surveill. 2011;16:19993.
Article
PubMed
Google Scholar
Andriopoulos P, Economopoulou A, Spanakos G, Assimakopoulos G. A local outbreak of autochthonous Plasmodium vivax malaria in Laconia, Greece—a re-emerging infection in the southern borders of Europe? Int J Infect Dis. 2013;17:e125–8. https://doi.org/10.1016/j.ijid.2012.09.009.
Article
PubMed
Google Scholar
Kasap H. Comparison of experimental infectivity and development of Plasmodium vivax in Anopheles sacharovi and An. superpictus in Turkey. Am J Trop Med Hyg. 1990;42:111–7. https://doi.org/10.4269/ajtmh.1990.42.111.
Article
CAS
PubMed
Google Scholar
Mancini G, Montarsi F, Calzolari M, Capelli G, Dottori M, Ravagnan S, et al. Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet Ital. 2017;53:97–110. https://doi.org/10.12834/VetIt.114.933.4764.2.
Article
PubMed
Google Scholar
World Health Organization (WHO). Mosquitoes of the genus Anopheles in countries of the WHO European Region having faced a recent resurgence of malaria. Regional research project, 2003–2007. 2008. WHO: Copenhagen. https://www.euro.who.int/__data/assets/pdf_file/0006/98763/E92010.pdf. Accessed 30 Nov 2020.
Yavaşoglu Sİ, Yaylagül EÖ, Akıner MM, Ülger C, Çağlar SS, Şimşek FM. Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta Trop. 2019;193:148–57. https://doi.org/10.1016/j.actatropica.2019.02.003.
Article
CAS
PubMed
Google Scholar
Violaris M, Vasquez MI, Samanidou A, Wirth MC, Hadjivassilis A. The mosquito fauna of the Republic of Cyprus: a revised list. J Am Mosq Control Assoc. 2009;25:199–202. https://doi.org/10.2987/08-5793.1.
Article
PubMed
Google Scholar
Ergunay K, Gunay F, Erisoz Kasap O, Oter K, Gargari S, Karaoglu T. Serological, molecular and entomological surveillance demonstrates widespread circulation of West Nile virus in Turkey. PLoS Negl Trop Dis. 2014;8: e3028. https://doi.org/10.1371/journal.pntd.0003028.
Article
PubMed
PubMed Central
Google Scholar
Dekoninck W, Hendrickx F, Van Bortel W, Versteirt V, Coosemans M, Damiens D, et al. Human-induced expanded distribution of Anopheles plumbeus, experimental vector of West Nile virus and a potential vector of human malaria in Belgium. J Med Entomol. 2011;48:924–8. https://doi.org/10.1603/me10235.
Article
CAS
PubMed
Google Scholar
Schaffner F, Van Bortel W, Coosemans M. First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq Control Assoc. 2004;20:201–3.
PubMed
Google Scholar
Versteirt V, Schaffner F, Garros C, Dekoninck W, Coosemans M, Van Bortel W. Introduction and establishment of the exotic mosquito species Aedes japonicus japonicus (Diptera: Culicidae) in Belgium. J Med Entomol. 2009;46:1464–7. https://doi.org/10.1603/033.046.0632.
Article
CAS
PubMed
Google Scholar
Romanović M, Merdić E. Investigation of mosquito larvae (Diptera, Culicidae) in the coastal area of Dalmatia, Croatia. Period Biol. 2011;113:109–13.
Google Scholar
Townroe S, Callaghan A. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology. PLoS ONE. 2014;9:e95325. https://doi.org/10.1371/journal.pone.0095325.
Article
PubMed
PubMed Central
Google Scholar
Balestrino F, Schaffner F, Forgia DL, Paslaru AI, Torgerson PR, Mathis A, et al. Field evaluation of baited traps for surveillance of Aedes japonicus japonicus in Switzerland. Med Vet Entomol. 2016;30:64–72. https://doi.org/10.1111/mve.12152.
Article
CAS
PubMed
Google Scholar
Martínez-Barciela Y, Martínez JMP, Torres MIS, Ortega ÁP, González JCO, González JG. First records of Anopheles (Anopheles) plumbeus Stephens, 1828 and Culex (Culex) torrentium Martini, 1925 (Diptera: Culicidae) in Galicia (NW Spain). J Vector Ecol. 2020;45:306–11. https://doi.org/10.1111/jvec.12401.
Article
PubMed
Google Scholar
Paronyan L, Babayan L, Manucharyan A, Manukyan D, Vardanyan H, Melik-Andrasyan G, et al. The mosquitoes of Armenia: review of knowledge and results of a field survey with first report of Aedes albopictus. Parasite. 2020;27:42. https://doi.org/10.1051/parasite/2020039.
Article
PubMed
PubMed Central
Google Scholar
Heym EC, Kampen H, Fahle M, Hohenbrink TL, Schäfer M, Scheuch DE, et al. Anopheles plumbeus (Diptera: Culicidae) in Germany: updated geographic distribution and public health impact of a nuisance and vector mosquito. Trop Med Int Health. 2017;22:103–12. https://doi.org/10.1111/tmi.12805.
Article
PubMed
Google Scholar
Früh L, Kampen H, Koban MB, Pernat N, Schaub GA, Werner D. Oviposition of Aedes japonicus japonicus (Diptera: Culicidae) and associated native species in relation to season, temperature and land use in western Germany. Parasit Vectors. 2020;13:623. https://doi.org/10.1186/s13071-020-04461-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shute PG. Indigenous P. vivax malaria in London believed to have been transmitted by Anopheles plumbeus. Mon Bull Minist Health Public Health Lab Serv. 1954;13:48–51.
CAS
PubMed
Google Scholar
Ibanez-Justicia A, Stroo A, Dik M, Beeuwkes J, Scholte EJ. National mosquito (Diptera: Culicidae) survey in The Netherlands 2010–2013. J Med Entomol. 2015;52:185–98. https://doi.org/10.1093/jme/tju058.
Article
CAS
PubMed
Google Scholar
Cerný O, Votýpka J, Svobodová M. Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Med Vet Entomol. 2011;25:104–8. https://doi.org/10.1111/j.1365-2915.2010.00875.x.
Article
PubMed
Google Scholar
Eling W, van Gemert GJ, Akinpelu O, Curtis J, Curtis CF. Production of Plasmodium falciparum sporozoites by Anopheles plumbeus. Eur Mosq Bull. 2003;15:12–3.
Google Scholar
Shute PG, Maryon M. Malaria in England past, present and future. J R Soc Promot Health. 1974;94:23–9. https://doi.org/10.1177/146642407409400111.
Article
CAS
Google Scholar
Schaffner F, Thiéry I, Kaufmann C, Zettor A, Lengeler C, Mathis A, et al. Anopheles plumbeus (Diptera: Culicidae) in Europe: a mere nuisance mosquito or potential malaria vector? Malar J. 2012;11:393. https://doi.org/10.1186/1475-2875-11-393.
Article
PubMed
PubMed Central
Google Scholar
Krüger A, Rech A, Su X-Z, Tannich E. Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health. 2001;6:983–5. https://doi.org/10.1046/j.1365-3156.2001.00816.x.
Article
PubMed
Google Scholar
Severini F, Toma L, Di Luca M, Romi R. Le zanzare italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragm Entomol. 2009;41:213–372.
Article
Google Scholar
Montarsi F, Martini S, Michelutti A, Da Rold G, Mazzucato M, Qualizza D, et al. The invasive mosquito Aedes japonicus japonicus is spreading in northeastern Italy. Parasit Vectors. 2019;12(1):120. https://doi.org/10.1186/s13071-019-3387-x.
Drago A, Marini F, Caputo B, Coluzzi M, Della Torre A, Pombi M. Looking for the gold standard: assessment of the effectiveness of four traps for monitoring mosquitoes in Italy. J Vector Ecol. 2012;37:117–23. https://doi.org/10.1111/j.1948-7134.2012.00208.x.
Article
PubMed
Google Scholar
Lühken R, Pfitzner W, Börstler J, Garms R, Huber K, Schork N, et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors. 2014;7:268. https://doi.org/10.1186/1756-3305-7-268.
Article
PubMed
PubMed Central
Google Scholar
Novikov YM. Rearing of Anopheles beklemishevi (Diptera: Culicidae) and the possibility of its hybridization with An. atroparvus under laboratory conditions. J Vector Ecol. 2016;41:320–2. https://doi.org/10.1111/jvec.12231.
Article
PubMed
Google Scholar
Birnberg L, Aranda C, Talavera S, Núñez AI, Escosa R, Busquets N. Laboratory colonization and maintenance of Anopheles atroparvus from the Ebro Delta, Spain. Parasit Vectors. 2020;13:394. https://doi.org/10.1186/s13071-020-04268-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coluzzi M. Maintenance of laboratory colonies of Anopheles mosquitoes. Bull World Health Organ. 1964;31:441–3.
CAS
PubMed
PubMed Central
Google Scholar
Rasnitsyn SP, Yasyukevich VV, Zvantsov AB, Artemiev M. Establishment of a laboratory colony of Anopheles superpictus. Med Parazitol. 1990;1:7–8.
Google Scholar
Rasnitsyn SP. Massovoe kul’tivirovanie Anopheles sacharovi Favre [Mass cultivation of Anopheles sacharovi Favre]. Med Parazitol. 1985;6:6 (in Russian).
Google Scholar
Maeno Y, Culleton R, Quang NT, Kawai S, Marchand RP, Nakazawa S. Plasmodium knowlesi and human malaria parasites in Khan Phu, Vietnam: gametocyte production in humans and frequent co-infection of mosquitoes. Parasitology. 2017;144:527–35. https://doi.org/10.1017/S0031182016002110.
Article
CAS
PubMed
Google Scholar
Török E, Kolcsár LP, Keresztes L. New records and faunistic data of mosquitoes (Diptera, culicidae) from Albania, Hungary, Macedonia, Montenegro, and Serbia. Turk J Zool. 2019;43:123–30. https://doi.org/10.3906/ZOO-1803-23.
Article
Google Scholar
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, et al. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J. 2018;17:276. https://doi.org/10.1186/s12936-018-2428-9.
Article
PubMed
PubMed Central
Google Scholar
Lebl K, Nischler EM, Walter M, Brugger K, Rubel F. First record of the disease vector Anopheles hyrcanus in Austria. J Am Mosq Control Assoc. 2013;29:59–60. https://doi.org/10.2987/12-6282.1.
Article
PubMed
Google Scholar
Zittra C, Waringer J. Species inventory, ecology, and seasonal distribution patterns of Culicidae (Insecta: Diptera) in the National Park Donau-Auen (Lower Austria). Aquat Insects. 2014;36:63–77. https://doi.org/10.1080/01650424.2014.1003946.
Article
Google Scholar
Silbermayr K, Eigner B, Joachim AL, Duscher GG, Seidel B, Allerberger F, et al. Autochthonous Dirofilaria repens in Austria. Parasit Vectors. 2014;7:226. https://doi.org/10.1186/1756-3305-7-226.
Article
PubMed
PubMed Central
Google Scholar
Lebl K, Zittra C, Silbermayr K, Obwaller A, Berer D, Brugger K, et al. Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna, Austria. Parasitol Res. 2015;114:707–13. https://doi.org/10.1007/s00436-014-4237-6.
Article
PubMed
Google Scholar
Zittra C, Vitecek S, Obwaller AG, Rossiter H, Eigner B, Zechmeister T, et al. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors. 2017;10:205. https://doi.org/10.1186/s13071-017-2140-6.
Article
PubMed
PubMed Central
Google Scholar
Namazov ND. The distribution of mosquitoes (Diptera, Culicidae) in the Republic of Azerbaijan. Entomol Rev. 2014;94:280–2. https://doi.org/10.1134/S0013873814020171.
Article
Google Scholar
Sulesco T, Volkova T, Yashkova S, Tomazatos A, von Thien H, Lühken R, et al. Detection of Dirofilaria repens and Dirofilaria immitis DNA in mosquitoes from Belarus. Parasitol Res. 2016;115:3535–41. https://doi.org/10.1007/s00436-016-5118-y.
Article
PubMed
Google Scholar
Versteirt V, de Clercq EM, Fonseca DM, Pecor J, Schaffner F, Coosemans M, et al. Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J Med Entomol. 2012;49:1226–32. https://doi.org/10.1603/me11170.
Article
CAS
PubMed
Google Scholar
Boukraa S, Raharimalala FN, Zimmer J-Y, Schaffner F, Bawin T, Haubruge E, et al. Reintroduction of the invasive mosquito species Aedes albopictus in Belgium in July 2013. Parasite. 2013;20:54. https://doi.org/10.1051/parasite/2013054.
Article
PubMed
PubMed Central
Google Scholar
Versteirt V, Boyer S, Damiens D, De Clercq EM, Dekoninck W, Ducheyne E, et al. Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium, Europe. Bull Entomol Res. 2013;103:193–203. https://doi.org/10.1017/S0007485312000521.
Article
CAS
PubMed
Google Scholar
Deblauwe I, Demeulemeester J, De Witte J, Hendy A, Sohier C, Madder M. Increased detection of Aedes albopictus in Belgium: no overwintering yet, but an intervention strategy is still lacking. Parasitol Res. 2015;114:3469–77. https://doi.org/10.1007/s00436-015-4575-z.
Article
PubMed
Google Scholar
Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, et al. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour. 2015;15:449–57. https://doi.org/10.1111/1755-0998.12318.
Article
CAS
PubMed
Google Scholar
Boukraa S, de La Grandiere MA, Bawin T, Raharimalala FN, Zimmer J-Y, Haubruge E, et al. Diversity and ecology survey of mosquitoes potential vectors in Belgian equestrian farms: a threat prevention of mosquito-borne equine arboviruses. Prev Vet Med. 2016;124:58–68. https://doi.org/10.1016/j.prevetmed.2015.12.013.
Article
PubMed
Google Scholar
Raharimalala FN, Boukraa S, Bawin T, Boyer S, Francis F. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates. Parasitol Res. 2016;115:1391–9. https://doi.org/10.1007/s00436-015-4873-5.
Article
PubMed
Google Scholar
Wang L, Rosales Rosas AL, De Coninck L, Shi C, Bouckaert J, Matthijnssens J, et al. Establishment of Culex modestus in Belgium and a glance into the virome of Belgian mosquito species. mSphere. 2021;6: e01229-20. https://doi.org/10.1128/mSphere.01229-20.
Article
PubMed
PubMed Central
Google Scholar
Merdić E, Lovaković T. Population dynamic of Aedes vexans and Ochlerotatus sticticus in flooded areas of the River Drava in Osijek, Croatia. J Am Mosq Control Assoc. 2001;17:275–80.
PubMed
Google Scholar
Merdić E, Krčmar S, Sudarić Bogojević M, Jeličić Ž. Response of mosquitoes to different synthetic and natural olfactory attractants (Diptera, Culicidae). Entomol Generalis. 2007;4:253–61.
Google Scholar
Bogojević Sudarić M, Merdić E, Vrućina I, Merdić S, Zahirović Ž, Turić N, et al. Results of ten years of mosquito (Diptera: Culicidae) monitoring in Osijek, Croatia. Entomol Croat. 2008;12:67–78.
Google Scholar
Merdić E, Boca I, Bogojević MS, Landeka N. Mosquitoes of Istria, a contribution to the knowledge of Croatian mosquito fauna (Diptera, Culicidae). Period Biol. 2008;110:351–60.
Google Scholar
Bogojević Sudarić M, Merdić E, Turić N, Jeličić Ž, Zahirović Ž, Vrućina I, et al. Seasonal dynamics of mosquitoes (Diptera: Culicidae) in Osijek (Croatia) for the period 1995–2004. Biologia (Bratisl). 2009;64:760–7. https://doi.org/10.2478/s11756-009-0138-z.
Article
Google Scholar
Merdić E, Bogojević MS, Boca I, Turić N. Determined and estimated mosquito (Diptera, Culicidae) fauna in the city of Osijek, Croatia, using dry-ice baited CDC traps. Period Biol. 2010;112:201–5.
Google Scholar
Merdić E. Mosquitoes—vectors of West Nile virus in Croatia. Rad Croat Acad Sci Arts Med Sci. 2013;39:115–22.
Google Scholar
Rettich F, Imrichova K, Šebesta O. Seasonal comparisons of the mosquito fauna in the flood plains of Bohemia and Moravia, Czech Republic. Eur Mosq Bull. 2007;23:10–6.
Google Scholar
Votýpka J, Šeblová V, Rádrová J. Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe. J Vector Ecol. 2008;33:269–77. https://doi.org/10.3376/1081-1710-33.2.269.
Article
PubMed
Google Scholar
Šebesta O, Rettich F, Minar J, Halouzka J, Hubalek Z, Juricova Z, et al. Presence of the mosquito Anopheles hyrcanus in South Moravia, Czech Republic. Med Vet Entomol. 2009;23:284–6. https://doi.org/10.1111/j.1365-2915.2009.00810.x.
Article
PubMed
Google Scholar
Dvořák L. Culiseta glaphyroptera (Schiner, 1864): a common species in the southwestern Czech Republic. Eur Mosq Bull. 2012;30:66–71.
Google Scholar
Hubalek Z, Sebesta O, Pesko J, Betasova L, Blazejova H, Venclikova K, et al. Isolation of Tahyna virus (California Encephalitis Group) from Anopheles hyrcanus (Diptera, Culicidae), a mosquito species new to, and expanding in, Central Europe. J Med Entomol. 2014;51:1264–7. https://doi.org/10.1603/ME14046.
Article
CAS
PubMed
Google Scholar
Šebesta O, Gelbič I. Increased presence of the thermophilic mosquitoes and potential vectors Anopheles hyrcanus (Pallas 1771) and Culex modestus Ficalbi 1889 in Central Europe’s lower Dyje River basin (South Moravia, Czech Republic). Ann Soc Entomol Fr. 2015;51:272–80. https://doi.org/10.1080/00379271.2015.1123118.
Article
Google Scholar
Šebesta O, Gelbič I. Late flooding combined with warm autumn—potential possibility for prolongation of transmission of mosquito-borne diseases. Biologia (Bratisl). 2016;71:1292–7. https://doi.org/10.1515/biolog-2016-0155.
Article
CAS
Google Scholar
Rudolf I, Betášová L, Blažejová H, Venclíková K, Straková P, Šebesta O, et al. West Nile virus in overwintering mosquitoes, central Europe. Parasites Vectors. 2017;10:452. https://doi.org/10.1186/s13071-017-2399-7.
Article
PubMed
PubMed Central
Google Scholar
Rudolf I, Šikutová S, Šebesta O, Mendel J, Malenovský I, Kampen H, et al. Overwintering of Culex modestus and other mosquito species in a reedbed ecosystem, including arbovirus findings. J Am Mosq Control Assoc. 2020;36:257–60. https://doi.org/10.2987/20-6949.1.
Article
PubMed
Google Scholar
Miaoulis M, Giantsis IA, Schaffner F, Chaskopoulou A. Re-examination of the taxonomic status of Anopheles hyrcanus and An. pseudopictus using a multilocus genetic approach. J Vector Ecol. 2018;43:179–83. https://doi.org/10.1111/jvec.12297.
Article
PubMed
Google Scholar
Herm R, Kirik H, Vilem A, Zani L, Forth JH, Müller A, et al. No evidence for African swine fever virus DNA in haematophagous arthropods collected at wild boar baiting sites in Estonia. Transbound Emerg Dis. 2021;68:2696–702. https://doi.org/10.1111/tbed.14013.
Article
CAS
PubMed
Google Scholar
Pradel JA, Martin T, Rey D, Foussadier R, Bicout DJ. Is Culex modestus (Diptera: Culicidae), vector of West Nile virus, spreading in the Dombes Area, France? J Med Entomol. 2009;46:1269–81. https://doi.org/10.1603/033.046.0604.
Article
CAS
PubMed
Google Scholar
Cook S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, et al. Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS ONE. 2013;8: e80720. https://doi.org/10.1371/journal.pone.0080720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nebbak A, Koumare S, Illcox AC, Berenger J-M, Raoult D, Almeras L, et al. Field application of MALDI-TOF MS on mosquito larvae identification. Parasitology. 2018;145:677–87. https://doi.org/10.1017/S0031182017001354.
Article
PubMed
Google Scholar
Zoller T, Naucke TJ, May J, Hoffmeister B, Flick H, Williams CJ, et al. Malaria transmission in non-endemic areas: case report, review of the literature and implications for public health management. Malar J. 2009;8:71. https://doi.org/10.1186/1475-2875-8-71.
Article
PubMed
PubMed Central
Google Scholar
Jost H, Bialonski A, Storch V, Gunther S, Becker N, Schmidt-Chanasit J. Isolation and phylogenetic analysis of sindbis viruses from mosquitoes in Germany. J Clin Microbiol. 2010;48:1900–3. https://doi.org/10.1128/JCM.00037-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jöst H, Bialonski A, Schmetz C, Günther S, Becker N, Schmidt-Chanasit J. Isolation and phylogenetic analysis of Batai virus, Germany. Am J Trop Med Hyg. 2011;84:241–3. https://doi.org/10.4269/ajtmh.2011.10-0483.
Article
PubMed
PubMed Central
Google Scholar
Czajka C, Becker N, Poppert S, Jöst H, Schmidt-Chanasit J, Krüger A. Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany. Parasit Vectors. 2012;5:14. https://doi.org/10.1186/1756-3305-5-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krüger A, Tannich E. Rediscovery of Anopheles algeriensis Theob. (Diptera: Culicidae) in Germany after half a century. J Eur Mosq Control Assoc. 2013;31:14–6.
Google Scholar
Krüger A, Börstler J, Badusche M, Lühken R, Garms R, Tannich E. Mosquitoes (Diptera: Culicidae) of metropolitan Hamburg, Germany. Parasitol Res. 2014;113:2907–14. https://doi.org/10.1007/s00436-014-3952-3.
Article
PubMed
Google Scholar
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, et al. Host-feeding patterns of mosquito species in Germany. Parasit Vectors. 2016;9:318. https://doi.org/10.1186/s13071-016-1597-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfitzner WP, Lehner A, Hoffmann D, Czajka C, Becker N. First record and morphological characterization of an established population of Aedes (Hulecoeteomyia) koreicus (Diptera: Culicidae) in Germany. Parasit Vectors. 2018;11:662. https://doi.org/10.1186/s13071-018-3199-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheuch D, Schäfer M, Eiden M, Heym E, Ziegler U, Walther D, et al. Detection of Usutu, Sindbis, and Batai viruses in mosquitoes (Diptera: Culicidae) collected in Germany, 2011–2016. Viruses. 2018;10:389. https://doi.org/10.3390/v10070389.
Article
CAS
PubMed Central
Google Scholar
Tippelt L, Walther D, Scheuch DE, Schäfer M, Kampen H. Further reports of Anopheles algeriensis Theobald, 1903 (Diptera: Culicidae) in Germany, with evidence of local mass development. Parasitol Res. 2018;117:2689–96. https://doi.org/10.1007/s00436-018-5938-z.
Article
PubMed
Google Scholar
Heym EC, Kampen H, Krone O, Schäfer M, Werner D. Molecular detection of vector-borne pathogens from mosquitoes collected in two zoological gardens in Germany. Parasitol Res. 2019;118:2097–105. https://doi.org/10.1007/s00436-019-06327-5.
Article
PubMed
PubMed Central
Google Scholar
Pernat N, Kampen H, Jeschke JM, Werner D. Buzzing homes: using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects. 2021;12:374. https://doi.org/10.3390/insects12050374.
Article
PubMed
PubMed Central
Google Scholar
Linton Y-M, Smith L, Harbach RE. Observations on the taxonomic status of Anopheles subalpinus Hackett & Lewis and An. melanoon Hackett. J Eur Mosq Control Assoc. 2002;13:1–7.
Google Scholar
Pastoula E, Samanidou-Voyadjoglou A, Spanakos G, Kremastinou J, Nasioulas G, Vakalis NC. Molecular characterization of the Anopheles maculipennis complex during surveillance for the 2004 olympic games in Athens. Med Vet Entomol. 2007;21:36–43. https://doi.org/10.1111/j.1365-2915.2007.00669.x.
Article
Google Scholar
Chaskopoulou A, Latham MD, Pereira RM, Connelly R, Bonds JA, Koehler PG. Efficacy of aerial ultra-low volume applications of two novel water-based formulations of unsynergized pyrethroids against riceland mosquitoes in Greece. J Am Mosq Control Assoc. 2011;27:414–22. https://doi.org/10.2987/11-6177.1.
Article
CAS
PubMed
Google Scholar
Akiner MM, Caglar SS, Simsek FM. Yearly changes of insecticide susceptibility and possible insecticide resistance mechanisms of Anopheles maculipennis Meigen (Diptera: Culicidae) in Turkey. Acta Trop. 2013;126:280–5. https://doi.org/10.1016/j.actatropica.2013.02.020.
Article
CAS
PubMed
Google Scholar
Lytra I, Emmanouel N. Study of Culex tritaeniorhynchus and species composition of mosquitoes in a rice field in Greece. Acta Trop. 2014;134:66–71. https://doi.org/10.1016/j.actatropica.2014.02.018.
Article
PubMed
Google Scholar
Beleri S, Chatzinikolaou S, Nearchou A, Patsoula E. Entomological study of the mosquito fauna in the regional unit of Drama, region of East Macedonia-Thrace, Greece (2015 to 2016). Vector-Borne Zoonotic Dis. 2017;17:665–71. https://doi.org/10.1089/vbz.2017.2113.
Article
PubMed
Google Scholar
Fotakis EA, Chaskopoulou A, Grigoraki L, Tsiamantas A, Kounadi S, Georgiou L, et al. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission. Acta Trop. 2017;174:29–37. https://doi.org/10.1016/j.actatropica.2017.06.005.
Article
PubMed
Google Scholar
Pergantas P, Tsatsaris A, Malesios C, Kriparakou G, Demiris N, Tselentis Y. A spatial predictive model for malaria resurgence in central Greece integrating entomological, environmental and social data. PLoS ONE. 2017;12:e0178836. https://doi.org/10.1371/journal.pone.0178836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karypidou MC, Almpanidou V, Tompkins AM, Mazaris AD, Gewehr S, Mourelatos S, et al. Projected shifts in the distribution of malaria vectors due to climate change. Clim Change. 2020;163:2117–33. https://doi.org/10.1007/s10584-020-02926-9.
Article
Google Scholar
Fotakis EA, Giantsis IA, Castells Sierra J, Tanti F, Balaska S, Mavridis K, et al. Population dynamics, pathogen detection and insecticide resistance of mosquito and sand fly in refugee camps, Greece. Infect Dis Poverty. 2020;9:30. https://doi.org/10.1186/s40249-020-0635-4.
Article
PubMed
PubMed Central
Google Scholar
Patsoula E, Beleri S, Tegos N, Mkrtsian R, Vakali A, Pervanidou D. Entomological data and detection of West Nile virus in mosquitoes in Greece (2014–2016), before disease re-emergence in 2017. Vector-Borne Zoonotic Dis. 2020;20:60–70. https://doi.org/10.1089/vbz.2018.2422.
Article
PubMed
Google Scholar
Spanoudis CG, Pappas CS, Savopoulou-Soultani M, Andreadis SS. Composition, seasonal abundance, and public health importance of mosquito species in the regional unit of Thessaloniki, Northern Greece. Parasitol Res. 2021;120:3083–90. https://doi.org/10.1007/s00436-021-07264-y.
Article
PubMed
Google Scholar
Szentpáli-Gavallér K, Antal L, Tóth M, Kemenesi G, Soltész Z, Dán A, et al. Monitoring of West Nile virus in mosquitoes between 2011–2012 in Hungary. Vector-Borne Zoonotic Dis. 2014;14:648–55. https://doi.org/10.1089/vbz.2013.1549.
Article
PubMed
PubMed Central
Google Scholar
Kemenesi G, Kurucz K, Kepner A, Dallos B, Oldal M, Herczeg R, et al. Circulation of Dirofilaria repens, Setaria tundra, and Onchocercidae species in Hungary during the period 2011–2013. Vet Parasitol. 2015;214:108–13. https://doi.org/10.1016/j.vetpar.2015.09.010.
Article
PubMed
Google Scholar
Sáringer-Kenyeres M, Kenyeres Z, Földvári G, Majoros G. First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera: Culicidae) imago in Central-Europe. Biologia. 2017;72:1224–7. https://doi.org/10.1515/biolog-2017-0137.
Article
CAS
Google Scholar
Ashe P, O’Connor JP, Casey RJ. Irish mosquitoes (Diptera: Culicidae): a checklist of the species and their known distribution. R Irish Acad. 1991;91B:21–36.
Google Scholar
Ascoli V, Facchinelli L, Valerio L, Zucchetto A, Dal Maso L, Coluzzi M. Distribution of mosquito species in areas with high and low incidence of classic Kaposi’s sarcoma and seroprevalence for HHV-8. Med Vet Entomol. 2006;20:198–208. https://doi.org/10.1111/j.1365-2915.2006.00624.x.
Article
CAS
PubMed
Google Scholar
Cancrini G, Magi M, Gabrielli S, Arispici M, Tolari F, Dell’Omodarme M, et al. Natural vectors of dirofilariasis in rural and urban areas of the Tuscan region, central Italy. J Med Entomol. 2006;43:574–9. https://doi.org/10.1603/0022-2585(2006)43[574:nvodir]2.0.co;2.
Article
CAS
PubMed
Google Scholar
Toma L, Cipriani M, Goffredo M, Romi R, Lelli R. First report on entomological field activities for the surveillance of West Nile disease in Italy. Vet Ital. 2008;44(3):483–97, 499–12.
Ascoli V, Senis G, Zucchetto A, Valerio L, Facchinelli L, Budroni M, et al. Distribution of ‘promoter’ sandflies associated with incidence of classic Kaposi’s sarcoma. Med Vet Entomol. 2009;23:217–25. https://doi.org/10.1111/j.1365-2915.2009.00811.x.
Article
CAS
PubMed
Google Scholar
Calzolari M, Bonilauri P, Bellini R, Caimi M, Defilippo F, Maioli G, et al. Arboviral survey of mosquitoes in two northern italian regions in 2007 and 2008. Vector-Borne Zoonotic Dis. 2010;10:875–84. https://doi.org/10.1089/vbz.2009.0176.
Article
PubMed
Google Scholar
Talbalaghi A, Moutailler S, Vazeille M, Failloux A-B. Are Aedes albopictus or other mosquito species from northern Italy competent to sustain new arboviral outbreaks? Med Vet Entomol. 2010;24:83–7. https://doi.org/10.1111/j.1365-2915.2009.00853.x.
Article
CAS
PubMed
Google Scholar
Calzolari M, Bonilauri P, Bellini R, Albieri A, Defilippo F, Tamba M, et al. Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna Region (Italy) in 2011. PLoS ONE. 2013;8:e63978. https://doi.org/10.1371/journal.pone.0063978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huhtamo E, Lambert AJ, Costantino S, Servino L, Krizmancic L, Boldorini R, et al. Isolation and full genomic characterization of Batai virus from mosquitoes, Italy 2009. J Gen Virol. 2013;94:1242–8. https://doi.org/10.1099/vir.0.051359-0.
Article
CAS
PubMed
Google Scholar
Pautasso A, Desiato R, Bertolini S, Vitale N, Radaelli MC, Mancini M, et al. Mosquito surveillance in Northwestern Italy to monitor the occurrence of tropical vector-borne diseases. Transbound Emerg Dis. 2013;60:154–61. https://doi.org/10.1111/tbed.12123.
Article
PubMed
Google Scholar
Flacio E, Rossi-Pedruzzi A, Bernasconi-casati E, Patocchi N. Culicidae fauna from canton ticino and report of three new species for Switzerland. Mitt Schweiz Entomol Ges. 2014;87:163–82.
Google Scholar
Montarsi F, Mazzon L, Cazzin S, Ciocchetta S, Capelli G. Seasonal and daily activity patterns of mosquito (Diptera: Culicidae) vectors of pathogens in Northeastern Italy. J Med Entomol. 2015;52:56–62. https://doi.org/10.1093/jme/tju002.
Article
PubMed
Google Scholar
Llopis VI, Tomassone L, Grego E, Serrano E, Mosca A, Vaschetti G, et al. Evaluating the feeding preferences of West Nile virus mosquito vectors using bird-baited traps. Parasit Vectors. 2016;9:479. https://doi.org/10.1186/s13071-016-1744-6.
Article
Google Scholar
Verna F, Modesto P, Radaelli MC, Francese DR, Monaci E, Desiato R, et al. Control of mosquito-borne diseases in Northwestern Italy: preparedness from one season to the next. Vector-Borne Zoonotic Dis. 2017;17:331–9. https://doi.org/10.1089/vbz.2016.2047.
Article
PubMed
Google Scholar
Toma L, Catalani M, Catalano A, Goffredo M, Romi R, Di Luca M. Finding of Anopheles (Anopheles) hyrcanus (Pallas, 1771) (Diptera, Culicidae) during the entomological surveillance for West Nile virus in Umbria, Italy. Vet Ital. 2017;53:263–6. https://doi.org/10.12834/VetIt.668.3283.3.
Article
PubMed
Google Scholar
Macaluso G, Gucciardi F, Guercio A, Blanda V, La Russa F, Torina A, et al. First neuroinvasive human case of West Nile disease in southern Italy: results of the ‘One Health’ approach. Vet Med Sci. 2021;7:2463–72. https://doi.org/10.1002/vms3.591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muja-Bajraktari N, Zhushi-Etemi F, Dikolli-Velo E, Kadriaj P, Gunay F. The composition, diversity, and distribution of mosquito fauna (Diptera: Culicidae) in Kosovo. J Vector Ecol. 2019;44:94–104. https://doi.org/10.1111/jvec.12333.
Article
PubMed
Google Scholar
Bernotiene R. The fauna and seasonal activity of mosquitoes (Diptera: Culicidae) in the Curonian Spit (Russia, Lithuania). J Eur Mosq Control Assoc. 2012;30:72–8.
Google Scholar
Beck M, Galm M, Weitzel T, Fohlmeister V, Kaiser A, Amold A, et al. Preliminary studies on the mosquito fauna of Luxembourg. Eur Mosq Bull. 2003;14:21–4.
Google Scholar
Sulesco TM, Toderas IK, Toderas LG. Annotated checklist of the mosquitoes of the Republic of Moldova. J Am Mosq Control Assoc. 2013;29:98–101. https://doi.org/10.2987/12-6311R.1.
Article
PubMed
Google Scholar
Sulesco TM, von Thien H, Toderas L, Lühken R, Tannich E. Circulation of Dirofilaria repens and Dirofilaria immitis in Moldova. Parasit Vectors. 2016;9:627. https://doi.org/10.1186/s13071-016-1916-4.
Article
PubMed
PubMed Central
Google Scholar
Failloux AB, Bouattour A, Faraj C, Gunay F, Haddad N, Harrat Z, et al. surveillance of arthropod-borne viruses and their vectors in the Mediterranean and Black Sea regions within the MediLabSecure Network. Curr Trop Med Rep. 2017;4:27–39. https://doi.org/10.1007/s40475-017-0101-y.
Article
PubMed
PubMed Central
Google Scholar
Reusken C, De Vires A, Ceelen E, Beeuwkes J, Scholte E-J. A study of the circulation of West Nile virus, Sindbis virus, Batai virus and Usutu virus in mosquitoes in a potential high-risk area for arbovirus circulation in the Netherlands, “De Oostvaardersplassen.” J Eur Mosq Control Assoc. 2011;29:66–81.
Google Scholar
Scholte E-J, den Hartog W, Reusken C. A report of Anopheles algeriensis (Diptera: Culicidae) from The Netherlands. Entomol Ber. 2011;71:39–42.
Google Scholar
Rydzanicz K, Lonc E. Species composition and seasonal dynamics of mosquito larvae in the Wrocław, Poland area. J Vector Ecol. 2003;28:255–66.
CAS
PubMed
Google Scholar
Wegner E. Additions to the mosquito fauna (Diptera: Culicidae) of Wrocław, Poland. J Eur Mosq Control Assoc. 2007;24:1–3.
Google Scholar
Wegner E. A study of mosquito fauna (Diptera: Culicidae) and the phenology of the species recorded in Wilanów (Warsaw, Poland). J Eur Mosq Control Assoc. 2009;27:23–32.
Google Scholar
Gliniewicz A, Rydzanicz K, Mikulak E. Methods of mosquito plague control in Świnoujscie area based on the analysis of species distribution. Przegl Epidemiol. 2015;69:93–8.
PubMed
Google Scholar
Rydzanicz K, Czułowska A, Dyczko D, Kiewra D. Assessment of mosquito larvae (Diptera: Culicidae) productivity in urban cemeteries in Wroclaw (SW Poland). Int J Trop Insect Sci. 2021;41:3249–55. https://doi.org/10.1007/s42690-020-00415-1.
Article
Google Scholar
Lopes P, Lourenco P, Sousa C, Novo T, Rodrigues A, Almeida PG, et al. Modelling patterns of mosquito density based on remote sensing images. Estoril Congress Center; 2005. p. 251–8. http://www.earsel.org/symposia/2005-symposium-Porto/pdf/031.pdf. Accessed 30 Nov 2020.
Freitas FB, Novo MT, Esteves A, de Almeida APG. Species composition and WNV screening of mosquitoes from Lagoons in a Wetland Area of the Algarve, Portugal. Front Physiol. 2012;2:1–7. https://doi.org/10.3389/fphys.2011.00122.
Article
Google Scholar
Osório HC, Zé-Zé L, Alves MJ. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J Med Entomol. 2012;49:717–21. https://doi.org/10.1603/me11184.
Article
PubMed
Google Scholar
Benali A, Nunes JP, Freitas FB, Sousa CA, Novo MT, Lourenço PM, et al. Satellite-derived estimation of environmental suitability for malaria vector development in Portugal. Remote Sens Environ. 2014;145:116–30. https://doi.org/10.1016/j.rse.2014.01.014.
Article
Google Scholar
Osório H, Zé-Zé L, Amaro F, Alves M. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal—2008–2014. Int J Environ Res Public Health. 2014;11:11583–96. https://doi.org/10.3390/ijerph111111583.
Article
PubMed
PubMed Central
Google Scholar
Ferreira C, de Pinho MV, Novo M, Calado M, Gonçalves L, Belo S, et al. First molecular identification of mosquito vectors of Dirofilaria immitis in continental Portugal. Parasites Vectors. 2015;8:139. https://doi.org/10.1186/s13071-015-0760-2.
Article
PubMed
PubMed Central
Google Scholar
De Pinho MV, Mendes AM, Mauricio IL, Calado MM, Novo MT, Belo S, et al. Molecular detection of Wolbachia pipientis in natural populations of mosquito vectors of Dirofilaria immitis from continental Portugal: first detection in Culex theileri. Med Vet Entomol. 2016;30:301–9. https://doi.org/10.1111/mve.12179.
Article
Google Scholar
Madeira S, Duarte A, Boinas F, Costa OH. A DNA barcode reference library of Portuguese mosquitoes. Zoonoses Public Health. 2021;68:926–36. https://doi.org/10.1111/zph.12885.
Article
CAS
PubMed
Google Scholar
Török E, Tomazatos A, Cadar D, Horváth C, Keresztes L, Jansen S, et al. Pilot longitudinal mosquito surveillance study in the Danube Delta Biosphere Reserve and the first reports of Anopheles algeriensis Theobald, 1903 and Aedes hungaricus Mihályi, 1955 for Romania. Parasites Vectors. 2016;9:196. https://doi.org/10.1186/s13071-016-1484-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ionică AM, Zittra C, Wimmer V, Leitner N, Votýpka J, Modrý D, et al. Mosquitoes in the Danube Delta: searching for vectors of filarioid helminths and avian malaria. Parasit Vectors. 2017;10:324. https://doi.org/10.1186/s13071-017-2264-8.
Article
PubMed
PubMed Central
Google Scholar
Tomazatos A, Cadar D, Török E, Maranda I, Horváth C, Keresztes L, et al. Circulation of Dirofilaria immitis and Dirofilaria repens in the Danube Delta Biosphere Reserve, Romania. Parasites Vectors. 2018;11:392. https://doi.org/10.1186/s13071-018-2980-8.
Article
PubMed
PubMed Central
Google Scholar
Aibulatov SV. Bloodsucking dipterans (Diptera: Ceratopogonidae, Culicidae, Simuliidae, Tabanidae) of the Kurgala Peninsula, Leningrad Province. Entomol Rev. 2009;89:645–58. https://doi.org/10.1134/S0013873809060037.
Article
Google Scholar
Grushko OG, Sharakhova MV, Stegnii VN, Sharakhov IV. Molecular organization of heterochromatin in malaria mosquitoes of the Anopheles maculipennis subgroup. Gene. 2009;448:192–7. https://doi.org/10.1016/j.gene.2009.07.020.
Article
CAS
PubMed
Google Scholar
Lapshin DN, Vorontsov DD. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae). J Insect Physiol. 2013;59:828–39. https://doi.org/10.1016/j.jinsphys.2013.05.010.
Article
CAS
PubMed
Google Scholar
Artemov G, Bondarenko S, Sapunov G, Stegniy V. Tissue-specific differences in the spatial interposition of x-chromosome and 3r chromosome regions in the malaria mosquito Anopheles messeae Fall. PLoS ONE. 2015;10: e0115281. https://doi.org/10.1371/journal.pone.0115281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordeev MI, Moskaev AV. Chromosomal polymorphism in the populations of malaria mosquito Anopheles messeae (Diptera, Culicidae) in the Volga region. Russ J Genet. 2016;52:597–602.
Article
CAS
Google Scholar
Nekrasova LS, Vigorov YL, Vigorov AY. Dynamics of the composition of the fauna of mosquitoes (Diptera, Culicidae) in parks of Yekaterinburg. Russ J Ecol. 2016;47:186–93. https://doi.org/10.1134/S1067413616020090.
Article
Google Scholar
Perevozkin VP, Bondarchuk SS, Kormilitsin AV. Cytogenetic analysis of malarial mosquitoes of Kaliningrad Oblast. Russ J Genet. 2018;54:205–9. https://doi.org/10.1134/S102279541802014X.
Article
CAS
Google Scholar
Shaikevich E, Bogacheva A, Ganushkina L. Dirofilaria and Wolbachia in mosquitoes (Diptera: Culicidae) in central European Russia and on the Black Sea coast. Parasite. 2019;26:2. https://doi.org/10.1051/parasite/2019002.
Article
PubMed
PubMed Central
Google Scholar
Shaikevich E, Bogacheva A, Rakova V, Ganushkina L, Ilinsky Y. Wolbachia symbionts in mosquitoes: intra- and intersupergroup recombinations, horizontal transmission and evolution. Mol Phylogenet Evol. 2019;134:24–34. https://doi.org/10.1016/j.ympev.2019.01.020.
Article
PubMed
Google Scholar
Vujić A, Stefanović A, Dragičević I, Matijević T, Pejčić L, Knežević M, et al Species composition and seasonal dynamics of mosquitoes (Diptera: Culicidae) in flooded areas of Vojvodina, Serbia. Arch Biol Sci. 2010;62:1193–206.
Article
Google Scholar
Petric D, Cvjetkovic IH, Radovanov J, Cvjetkovic D, Patic VJ, Milosevic V, et al. West nile virus surveillance in humans and mosquitoes and detection of cell fusing agent virus in Vojvodina province (Serbia). HealthMED. 2012;6:462–8.
Google Scholar
Kemenesi G, Krtinić B, Milankov V, Kutas A, Dallos B, Oldal M, et al. West Nile virus surveillance in mosquitoes, April to October 2013, Vojvodina province, Serbia: implications for the 2014 season. Eurosurveillance. 2014;19:1–5.
Article
Google Scholar
Petrić D, Petrović T, Hrnjaković Cvjetković I, Zgomba M, Milošević V, Lazić G, et al. West Nile virus ‘circulation’ in Vojvodina, Serbia: mosquito, bird, horse and human surveillance. Mol Cell Probes. 2017;31:28–36. https://doi.org/10.1016/j.mcp.2016.10.011.
Article
CAS
PubMed
Google Scholar
Brestovský J, Jalili N. Mosquitoes of the Ipeľ River Floodplain in the surroundings of the Šahy town after the floods in 1999. Acta Zool. 2001;44:79–84.
Google Scholar
Jalili N, Halgoš J. Mosquito prevalence in the Komárno and Nové Zámky regions of southern Slovakia. J Eur Mosq Control Assoc. 2004;18:30–6.
Google Scholar
Strelková L, Halgoš J. Mosquitoes (Diptera, Culicidae) of the Morava River floodplain, Slovakia. Open Life Sci. 2012;7:917–26. https://doi.org/10.2478/s11535-012-0061-0.
Article
Google Scholar
Bocková E, Kočišová A, Hlavatá H. Evaluation of species composition and seasonal dynamics of mosquito larvae in the Košice Basin during 2010 and 2011. Biologia. 2013;68:337–44. https://doi.org/10.2478/s11756-013-0150-1.
Article
CAS
Google Scholar
Bocková E, Iglódyová A, Kočišová A. Potential mosquito (Diptera:Culicidae) vector of Dirofilaria repens and Dirofilaria immitis in urban areas of Eastern Slovakia. Parasitol Res. 2015;114:4487–92. https://doi.org/10.1007/s00436-015-4692-8.
Article
PubMed
Google Scholar
Bocková E, Kočišová A. Species composition of mosquitoes (Diptera: Culicidae) in relation to climate conditions in South-Eastern Slovakia. Biologia (Bratisl). 2016;71:204–11. https://doi.org/10.1515/biolog-2016-0025.
Article
Google Scholar
Bargues MD, Morchón R, Latorre JM, Cancrini G, Mas-Coma S, Simón F. Ribosomal DNA second internal transcribed spacer sequence studies of Culicid vectors from an endemic area of Dirofilaria immitis in Spain. Parasitol Res. 2006;99:205–13. https://doi.org/10.1007/s00436-005-0107-6.
Article
CAS
PubMed
Google Scholar
Bargues MD, Latorre JM, Morchon R, Simon F, Escosa R, Aranda C, et al. rDNA sequences of Anopheles species from the Iberian peninsula and an evaluation of the 18S rRNA gene as phylogenetic marker in anophelinae. J Med Entomol. 2006;43:508–17. https://doi.org/10.1093/jmedent/43.3.508.
Article
CAS
PubMed
Google Scholar
Aranda C, Sánchez-Seco MP, Cáceres F, Escosa R, Gálvez JC, Masià M, et al. Detection and monitoring of mosquito flaviviruses in Spain between 2001 and 2005. Vector-Borne Zoonotic Dis. 2009;9:171–8. https://doi.org/10.1089/vbz.2008.0073.
Article
CAS
PubMed
Google Scholar
Bueno-Marí R, Jiménez-Peydró R. New anopheline records from the Valencian Autonomous Region of Eastern Spain (Diptera: Culicidae: Anophelinae). J Eur Mosq Control Assoc. 2010;28:148–56.
Google Scholar
Alba A, Allepuz A, Napp S, Soler M, Selga I, Aranda C, et al. Ecological surveillance for West Nile in Catalonia (Spain), learning from a five-year period of follow-up. Zoonoses Public Health. 2012;61:181–91. https://doi.org/10.1111/zph.12048.
Article
Google Scholar
Bueno-Marí R, Bernués Bañeres A, Chordá-Olmos FA, Jiménez-Peydró R. Entomological surveillance in a recent autochthonous malaria area of Spain. J Vector-Borne Dis. 2012;49:45–7.
PubMed
Google Scholar
Bernués-Bañares A, Jiménez- PR. Diversity of mosquitoes (Diptera Culicidae) in protected natural parks from Valencian Autonomous Region (Eastern Spain). Biodivers J. 2013;4:335–42.
Google Scholar
Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7:333. https://doi.org/10.1186/1756-3305-7-333.
Article
PubMed
PubMed Central