WHO. Dengue fever—Pakistan. World Health Organization. 2021. https://www.who.int/emergencies/disease-outbreak-news/item/dengue-fever-pakistan. Accessed 15 Dec 2021.
Beebe NW, Pagendam D, Trewin BJ, Boomer A, Bradford M, Ford A, et al. Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proc Natl Acad Sci USA. 2021;118:e2106828118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, et al. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niteroi, Brazil: a quasi-experimental study. PLoS Negl Trop Dis. 2021;15:e0009556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Indriani C, Tantowijoyo W, Rances E, Andari B, Prabowo E, Yusdi D, et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 2020;4:50.
Article
PubMed
PubMed Central
Google Scholar
Ahmad NA, Mancini MV, Ant TH, Martinez J, Kamarul GMR, Nazni WA, et al. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos Trans R Soc Lond B Biol Sci. 1818;376:20190809.
Article
Google Scholar
Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZA, Amran SNS, Ridhuan Ghazali MK, et al. Characterization of sodium channel mutations in the dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects. 2020;11:529. https://doi.org/10.3390/insects11080529.
Wasala SK, Brown AMV, Kang J, Howe DK, Peetz AB, Zasada IA, et al. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front Microbiol. 2019;10:964.
Article
PubMed
PubMed Central
Google Scholar
Czarnetzki AB, Tebbe CC. Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol. 2004;6:35–44.
Article
CAS
PubMed
Google Scholar
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefevre C, et al. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett. 2018;365:fny046. https://doi.org/10.1093/femsle/fny046.
de Oliveira CD, Goncalves DS, Baton LA, Shimabukuro PH, Carvalho FD, Moreira LA. Broader prevalence of Wolbachia in insects including potential human disease vectors. Bull Entomol Res. 2015;105:305–15.
Article
PubMed
CAS
Google Scholar
Lopez-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett. 2019;366(23):fnz232. https://doi.org/10.1093/femsle/fnz232.
Beckmann JF, Ronau JA, Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol. 2017;2:17007.
Article
PubMed
PubMed Central
Google Scholar
Perlmutter JI, Meyers JE, Bordenstein SR. Transgenic testing does not support a role for additional candidate genes in Wolbachia male killing or cytoplasmic incompatibility. mSystems. 2020;5:e00658-19. https://doi.org/10.1128/mSystems.00658-19.
Herran B, Geniez S, Delaunay C, Raimond M, Lesobre J, Bertaux J, et al. The shutting down of the insulin pathway: a developmental window for Wolbachia load and feminization. Sci Rep. 2020;10:10551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Zhang M, Hochstrasser M. The biochemistry of cytoplasmic incompatibility caused by endosymbiotic bacteria. Genes. 2020;11:852.
Article
CAS
PubMed Central
Google Scholar
Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, et al. An elusive endosymbiont: does Wolbachia occur naturally in Aedes aegypti? Ecol Evol. 2020;10:1581–91.
Article
PubMed
PubMed Central
Google Scholar
Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, et al. Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol. 2013;87:851–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu P, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis. 2012;6:e1754.
Article
PubMed
PubMed Central
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139:1268–78.
Article
PubMed
Google Scholar
Magori K, Legros M, Puente ME, Focks DA, Scott TW, Lloyd AL, et al. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Negl Trop Dis. 2009;3:e508.
Article
PubMed
PubMed Central
Google Scholar
Nguyen TH, Nguyen HL, Nguyen TY, Vu SN, Tran ND, Le TN, et al. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors. 2015;8:563.
Article
PubMed
PubMed Central
Google Scholar
Ross PA, Axford JK, Callahan AG, Richardson KM, Hoffmann AA. Persistent deleterious effects of a deleterious Wolbachia infection. PLoS Negl Trop Dis. 2020;14:e0008204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ross PA, Turelli M, Hoffmann AA. Evolutionary ecology of Wolbachia releases for disease control. Annu Rev Genet. 2019;53:93–116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Xi Z, Liu X, Wang J, Guo Y, Ren D, et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit Vectors. 2020;13:28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA. 2004;101:15042–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson A, Savakis C, et al. Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomol Exp Appl. 2009;132:232–40.
Article
Google Scholar
Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci USA. 2012;109:255–60.
Article
CAS
PubMed
Google Scholar
Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310:326–8.
Article
CAS
PubMed
Google Scholar
Joshi D, Pan X, McFadden MJ, Bevins D, Liang X, Lu P, et al. The maternally inheritable Wolbachia wAlbB induces refractoriness to Plasmodium berghei in Anopheles stephensi. Front Microbiol. 2017;8:366.
Article
PubMed
PubMed Central
Google Scholar
Fraser JE, O’Donnell TB, Duyvestyn JM, O’Neill SL, Simmons CP, Flores HA. Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathog. 2020;16:e1008410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puggioli A, Calvitti M, Moretti R, Bellini R. wPip Wolbachia contribution to Aedes albopictus SIT performance: advantages under intensive rearing. Acta Trop. 2016;164:473–81.
Article
PubMed
Google Scholar
Hoffmann AA, Ross PA, Rašić G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl. 2015;8:751–68.
Article
PubMed
PubMed Central
Google Scholar
Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017;13:e1006006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol. 2019;29:4241-8 e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng ML, Zhang DJ, Damiens DD, Lees RS, Gilles JR. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)-II-egg storage and hatching. Parasit Vectors. 2015;8:348.
Article
PubMed
PubMed Central
Google Scholar
Sarwar MS, Jahan N, Shahbaz F. Molecular detection and characterization of Wolbachia pipientis from Culex quinquefasciatus collected from Lahore, Pakistan. Am J Trop Med Hyg. 2018;98:154–61.
Article
PubMed
Google Scholar
Sarwar MS, Jahan N, Batool F, Kalim B. Wsp gene based detection and characterization of Wolbachia in indigenous Drosophila. J Bio & Env Sci. 2017;10:1–8.
Google Scholar
Yang C, Xi Z, Zhu J, Luo Y. Detection primer, detection method and detection kit of Aedes B type Wolbachia. China: Patent CN 104878111 A. 2015.
Joshi D, McFadden MJ, Bevins D, Zhang F, Xi Z. Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi. Parasit Vectors. 2014;7:1–9.
Article
CAS
Google Scholar
Armbruster P, Hutchinson RA. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol. 2002;39:699–704.
Article
PubMed
Google Scholar
Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JR. Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions. PLoS ONE. 2016;11:e0151864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–7.
Article
CAS
PubMed
Google Scholar
Lau MJ, Ross PA, Hoffmann AA. Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Negl Trop Dis. 2021;15:e0009179.
Article
PubMed
PubMed Central
Google Scholar
Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–4.
Article
CAS
PubMed
Google Scholar
Schraiber JG, Kaczmarczyk AN, Kwok R, Park M, Silverstein R, Rutaganira FU, et al. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. J Theor Biol. 2012;297:26–32.
Article
PubMed
Google Scholar
Xi Z, Dean JL, Khoo C, Dobson SL. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol. 2005;35:903–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruang-Areerate T, Kittayapong P. Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci USA. 2006;103:12534–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ant TH, Sinkins SP. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors. 2018;11:295.
Article
PubMed
PubMed Central
Google Scholar
Flores HA, de Bruyne JT, O’Donnell TB, Tuyet Nhu V, Giang NT, Trang HTX, et al. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 2020;16:e1008433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bian G, Zhou G, Lu P, Xi Z. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis. 2013;7:e2250.
Article
PubMed
PubMed Central
Google Scholar
Rasgon JL, Gamston CE, Ren X. Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol. 2006;72:6934–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop C, Parry R, Asgari S. Effect of Wolbachia wAlbB on a positive-sense RNA negev-like virus: a novel virus persistently infecting Aedes albopictus mosquitoes and cells. J Gen Virol. 2020;101:216–25.
Article
CAS
PubMed
Google Scholar
Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Büttner DW, et al. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Trop Med Int Health. 2000;5:275–9.
Article
CAS
PubMed
Google Scholar
Aljayyoussi G, Tyrer HE, Ford L, Sjoberg H, Pionnier N, Waterhouse D, et al. Short-course, high-dose rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and onchocerciasis. Sci Rep. 2017;7:210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calvitti M, Moretti R, Porretta D, Bellini R, Urbanelli S. Effects on male fitness of removing Wolbachia infections from the mosquito Aedes albopictus. Med Vet Entomol. 2009;23:132–40.
Article
CAS
PubMed
Google Scholar
Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, et al. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog. 2016;12:e1005434.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dobson SL, Rattanadechakul W, Marsland EJ. Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus. Heredity. 2004;93:135–42.
Article
CAS
PubMed
Google Scholar
Ross PA, Gu X, Robinson KL, Yang Q, Cottingham E, Zhang Y, et al. A wAlbB Wolbachia transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds. Appl Environ Microbiol. 2021;87:e0126421.
Article
PubMed
Google Scholar
Turley AP, Zalucki MP, O’Neill SL, McGraw EA. Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti. Parasit Vectors. 2013;6:1–10.
Article
Google Scholar
Foo IJ, Hoffmann AA, Ross PA. Cross-generational effects of heat stress on fitness and Wolbachia density in Aedes aegypti mosquitoes. Trop Med Infect Dis. 2019;4:13.
Article
PubMed Central
Google Scholar
Honěk A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos. 1993;66:483–92. https://doi.org/10.2307/3544943.
Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg. 2016;94:507–16.
Article
PubMed
PubMed Central
Google Scholar
Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg. 2016;94:507–16.
Article
PubMed
PubMed Central
Google Scholar
Xi Z, Khoo CC, Dobson SL. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci B. 2006;273:1317–22.
Google Scholar
Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 2019;572:56–61.
Article
CAS
PubMed
Google Scholar