WHO. Chagas disease (American trypanosomiasis). 2020. https://www.who.int/health-topics/chagas-disease. Accessed 27 Jul 2020.
Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4.
Article
CAS
PubMed
Google Scholar
Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012;12:240–53.
Article
PubMed
Google Scholar
Hamilton PB, Lewis MD, Cruickshank C, Gaunt MW, Yeo M, Llewellyn MS, et al. Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding. Infect Genet Evol. 2011;11:44–51.
Article
CAS
PubMed
Google Scholar
Sales Junior PA, Molina I, Fonseca SMM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, et al. Experimental and clinical treatment of Chagas disease: a review. Am J Trop Med Hyg. 2017;97:1289–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cançado JR. Criteria of Chagas disease cure. Mem Inst Oswaldo Cruz. 1999;94:331–5.
Article
PubMed
Google Scholar
Sguassero Y, Cuesta CB, Roberts KN, Hicks E, Comandé D, Ciapponi A, et al. Course of chronic Trypanosoma cruzi infection after treatment based on parasitological and serological tests: a systematic review of follow-up studies. PLoS ONE. 2015;10:0139363.
Article
CAS
Google Scholar
Molina I, Salvador F, Montalvá AS, Treviño B, Serre N, Avilés AS, et al. Toxic profile of benznidazole in patients with chronic Chagas disease: risk factors and comparison of the product from two different manufacturers. Antimicrob Agents Chemother. 2015;59:6125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santi AMM, Silva PA, Santos IFM, Murta SMF. Downregulation of FeSOD-A expression in Leishmania infantum alters trivalent antimony and miltefosine susceptibility. Parasit Vectors. 2021;14:366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol. 2009;4:161–77.
Article
CAS
PubMed
Google Scholar
Plewes KA, Barr SD, Gedamu L. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect Immun. 2003;71:5910–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCord JM, Fridovich I. Supeoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–65.
Article
CAS
PubMed
Google Scholar
Neto VG, Ribeiro PR, Del-Bem LE, Bernal DT, Lima ST, Ligterink W, et al. Characterization of the superoxide dismutase gene family in seeds of two Ricinus communis L. genotypes submitted to germination under water restriction conditions. Environ Exp Bot. 2018;155:453–63.
Article
CAS
Google Scholar
Fridovich I. Superoxide dismutases. J Biol Chem. 1989;264:7761–4.
Article
CAS
PubMed
Google Scholar
Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. J Biol Chem. 2001;276:38084–9.
Article
CAS
PubMed
Google Scholar
Dufernez F, Yernaux C, Gerbod D, Noel C, Chauveneta M, Wintjensd R, et al. The presence of four iron-containing superoxide dismutase isozymes in Trypanosomatidae: characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei. Free Radic Biol Med. 2006;40:210–25.
Article
CAS
PubMed
Google Scholar
Turrens JF. Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med. 2004;25:211–20.
Article
CAS
PubMed
Google Scholar
Wilkinson SR, Prathalingam SR, Taylor MC, Ahmed A, Horn D, Kelly JM, et al. Functional characterization of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic Biol Med. 2006;40:198–209.
Article
CAS
PubMed
Google Scholar
Ismail SO, Paramchuk W, Skeiky YAW, Reed SG, Bhatia A, Gedamu L. Molecular cloning and characterization of two iron superoxide dismutase cDNAs from Trypanosoma cruzi. Mol Biochem Parasitol. 1997;86:187–97.
Article
CAS
PubMed
Google Scholar
Villagrán ME, Marín C, Rodríguez-Gonzalez I, de Diego JA, Sánchez-Moreno M. Use of an iron superoxide dismutase excreted by Trypanosoma cruzi in the diagnosis of Chagas disease: seroprevalence in rural zones of the state of Queretaro Mexico. Am J Trop Med Hyg. 2005;73:510–6.
Article
PubMed
Google Scholar
Nogueira FB, Krieger MA, Nirdé P, Goldenberg S, Romanha AJ, Murta SM. Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop. 2006;100:119–32.
Article
CAS
PubMed
Google Scholar
Sanz AM, Gómez-Contreras F, Navarro P, Sánchez-Moreno M, Boutaleb-Charki S, Campuzano J, et al. Efficient inhibition of iron superoxide dismutase and of Trypanosoma cruzi growth by benzo[g]phthalazine derivatives functionalized with one or two imidazole rings. J Med Chem. 2008;51:1962–6.
Article
CAS
PubMed
Google Scholar
Martínez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B. J Biol Chem. 2014;289:12760–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mateo H, Marín C, Pérez-Cordón G, Sánchez-Moreno M. Purification and biochemical characterization of four iron superoxide dismutases in Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2008;103:271–6.
Article
CAS
PubMed
Google Scholar
Fracasso M, da Silva AD, Bottari NB, Monteiro SG, Garzon LR, de Souza LAF, et al. Resveratrol impacts in oxidative stress in liver during Trypanosoma cruzi infection. Microb Pathog. 2021;153:104800.
Article
CAS
PubMed
Google Scholar
Piacenza L, Irigóin F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, et al. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J. 2007;403:323–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estrada D, Specker G, Martínez A, Dias PP, Hissa B, Andrade LO, et al. Cardiomyocyte diffusible redox mediators control Trypanosoma cruzi infection: role of parasite mitochondrial iron superoxide dismutase. Biochem J. 2018;475:1235–51.
Article
CAS
PubMed
Google Scholar
Lauthier JJ, Tomasini N, Barnabé C, Rumi MMM, D’Amato AMA, Ragone PG, et al. Candidate targets for multilocus sequence typing of Trypanosoma cruzi: validation using parasite stocks from the Chaco region and a set of reference strains. Infect Genet Evol. 2012;12:350–8.
Article
CAS
PubMed
Google Scholar
Nahum LA, Pereira SL. Phylogenomics, protein family evolution, and the tree of life: an integrated approach between molecular evolution and computational intelligence. In: Smolinski TG, Milanova MG, Hassanien AE, editors. Studies in computational intelligence (SCI). Heidelberg: Springer SBS; 2008. p. 259–79. https://doi.org/10.1007/978-3-540-78534-7.
Chapter
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TryTripDB: a functional genomic resource for the trypanosomatidae. Nucleic Acids Res. 2010;38:D457-62.
Article
CAS
PubMed
Google Scholar
Cuesta-Astroz Y, Scholte LLS, Pais FS, Oliveira G, Nahum LA. Evolutionary analysis of the cystatin family in three Schistosoma species. Front Genet. 2014;5:206.
Article
PubMed
PubMed Central
CAS
Google Scholar
Valdivia HO, Scholte LL, Oliveira G, Gabaldón T, Bartholomeu DC. The Leishmania metaphylome: a comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics. 2015;16:887.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mitchell JB. Enzyme function and its evolution. Curr Opin Struc Biol. 2017;47:151–6.
Article
CAS
Google Scholar
Scholte LLS, Mourão MM, Pais FS, Melesina J, Robaa D, Volpini AC, et al. Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases. Infect Genet Evol. 2017;53:175–88.
Article
CAS
PubMed
Google Scholar
Anisimova M, Liberles DA, Philippe H, Provan J, Pupko T, von Haeseler A. State-of the art methodologies dictate new standards for phylogenetic analysis. BMC Evol Biol. 2013;13:161.
Article
PubMed
PubMed Central
Google Scholar
Camargo EP. Growth and differentiation in Trypanosoma cruzi. I. origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo. 1964;6:93–100.
CAS
PubMed
Google Scholar
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81:755–9.
Article
CAS
PubMed
Google Scholar
Toledo MJO, Bahia MT, Carneiro CM, Martins-Filho OA, Tibayrenc M, Barnabé C, et al. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrob Agents Chemother. 2003;47:223–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murta SMF, Gazzinelli RT, Brener Z, Romanha AJ. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol. 1998;93:203–14.
Article
CAS
PubMed
Google Scholar
Teston APM, Monteiro WM, Reis D, Bossolani GDP, Gomes ML, de Araújo SM, et al. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013;18:85–95.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;45:2699.
Article
CAS
Google Scholar
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, et al. The Pfam protein families database. Nucleic Acids Res. 2008;36:281–8.
Article
CAS
Google Scholar
Wei Z, Zhang S. NPBSS: a new PacBio sequencing simulator for generating the continuous long reads with an empirical model. BMC Bioinformatics. 2018;19:177.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu L, Hu N, Wang B, Chen M, Wang J, Tian Z, et al. A brief utilization report on the Illumina HiSeq 2000 sequencer. Mycology. 2011;2:169–91.
Article
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;00:1–3.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machado M, Magalhães WCS, Sene A, Araújo B, Faria-Campos AC, Chanock SJ, et al. Phred-Phrap package to analyses tools: a pipeline to facilitate population genetics re-sequencing studies. Investig Genet. 2011;2:3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amid C, Alako BTF, Kadhirvelu VB, Burdett T, Burgin J, Fan J, et al. The European nucleotide archive. Nucleic Acids Res. 2020;48:70–6.
Article
CAS
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:733–45.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and high-performance computing. Nat Methods. 2012;9:772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed
PubMed Central
Google Scholar
FigTree. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 Feb 2020.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:1074–82.
Article
CAS
Google Scholar
Romanha AJ, Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A, et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz. 2010;105:233–8.
Article
CAS
PubMed
Google Scholar
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran A, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409.
Article
CAS
PubMed
Google Scholar
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, et al. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom. 2018;4:e000177.
PubMed Central
Google Scholar
Thomsen M, Vitetta L. Zinc deficits, mucositis, and mucosal macrophage perturbation: is there a relationship? Curr Opin Clin Nutr Metab Care. 2019;22:365–70.
Article
CAS
PubMed
Google Scholar
Liu Z, Xie W, Li M, Liu J, Liang X, Li T. Intrarectally administered polaprezinc attenuates the development of dextran sodium sulfate-induced ulcerative colitis in mice. Exp Ther Med. 2019;18:4927–34.
CAS
PubMed
PubMed Central
Google Scholar
Ye J, Zhang Z, Zhu L, Lu M, Li Y, Zhou J, et al. Polaprezinc inhibits liver fibrosis and proliferation in hepatocellular carcinoma. Mol Med Rep. 2017;16:5523–8.
Article
CAS
PubMed
Google Scholar
Fujii H, Hirose C, Ishihara M, Iihara H, Imai H, Tanaka Y, et al. Improvement of dysgeusia by polaprezinc, a zinc-L-carnosine, in outpatients receiving cancer chemotherapy. Anticancer Res. 2018;38:6367–73.
Article
CAS
PubMed
Google Scholar
Yoshikawa F, Nakajima T, Hanada M, Hirata K, Masuyama T, Aikawa R. Beneficial effect of polaprezinc on cardiac function post-myocardial infarction: a prospective and randomized clinical trial. Medicine (Baltimore). 2019;98:e14637.
Article
CAS
Google Scholar
Kimura K, Nakano Y, Sugizaki T, Shimoda M, Kobayashi N, Kawahara M, et al. Protective effect of polaprezinc on cadmium-induced injury of lung epithelium. Metallomics. 2019;11:1310–20.
Article
CAS
PubMed
Google Scholar
Karlsson JOG, Andersson RGG, Jynge P. Mangafodipir a selective cytoprotectant—with special reference to oxaliplatin and its association to chemotherapy-induced peripheral neuropathy (CIPN). Transl Oncol. 2017;10:641–9.
Article
PubMed
PubMed Central
Google Scholar
Piacenza L, Peluffo G, Alvarez MN, Martínez A, Radi R. Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease. Antioxid Redox Signal. 2013;19:723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez A, Prolo C, Estrada D, Rios N, Alvarez MN, Piñeyro MD, et al. Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci USA. 2019;116:8879–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis MD, Llewellyn MS, Yeo M, Acosta N, Gaunt MW, Miles MA. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids. PLoS Negl Trop Dis. 2011;5:1363.
Article
Google Scholar
Monteiro WM, Teston APM, Gruendling AP, dos Reis D, Gomes ML, de Araújo SM, et al. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice. PLoS Negl Trop Dis. 2013;7:2069.
Article
Google Scholar
Sánchez-Moreno M, Sanz AM, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macias I, et al. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J Med Chem. 2011;54:970–9.
Article
PubMed
CAS
Google Scholar
Sánchez-Moreno M, Gómez-Contreras F, Navarro P, Marín C, Olmo F, Yunta MJR, et al. Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse mode of infection. J Med Chem. 2012;55:9900–13.
Article
PubMed
CAS
Google Scholar
Toledo MJO, Bahia MT, Cláudia MC, Martins-Filho OA, Tibayrenc M, Barnabe C, et al. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrob Agents Chemother. 2003;47:223–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Phan IQH, Davies DR, Moretti NS, Shanmugam D, Cestari I, Anupama A, et al. Iron superoxide dismutases in eukaryotic pathogens: new insights from apicomplexa and Trypanosoma structures. Acta Crystallogr F Struct Biol Commun. 2015;71:615–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachega JFR, Navarro MVAS, Bleicher L, Bortoleto-Bugs RK, Dive D, Hoffmann P, et al. Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity. Proteins. 2009;77:26–37.
Article
CAS
PubMed
Google Scholar