Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology. 2003;126:203–24.
Article
CAS
Google Scholar
Caffrey CR. Schistosomiasis and its treatment. Future Med Chem. 2015;7:675–6.
Article
CAS
Google Scholar
Wilson RA. Schistosomiasis then and now: what has changed in the last 100 years? Parasitology. 2020;147:507–15.
Article
Google Scholar
Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol. 2002;2:499–511.
Article
CAS
Google Scholar
Sombetzki M, Rabes A, Bischofsberger M, Winkelmann F, Koslowski N, Schulz C, et al. Preventive CTLA-4-Ig treatment reduces hepatic egg load and hepatic fibrosis in Schistosoma mansoni-infected mice. Biomed Res Int. 2019;2019:1704238.
Article
Google Scholar
Da’dara A, Skelly PJ. Manipulation of vascular function by blood flukes? Blood Rev. 2011;25:175–9.
Article
CAS
Google Scholar
Mas-Coma S, Bargues MD, Valero MA. Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol. 2005;35:1255–78.
Article
CAS
Google Scholar
Piedrafita D, Spithill TW, Smith RE, Raadsma HW. Improving animal and human health through understanding liver fluke immunology. Parasite Immunol. 2010;32:572–81.
CAS
Google Scholar
Fairweather I. Triclabendazole: new skills to unravel an old(ish) enigma. J Helminthol. 2005;79:227–34.
Article
CAS
Google Scholar
Mas-Coma S, Valero MA, Bargues MD. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol. 2009;163:264–80.
Article
Google Scholar
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.
Article
CAS
Google Scholar
Wendt G, Zhao L, Chen R, Liu C, O’Donoghue AJ, Caffrey CR, et al. A single-cell RNA-seq atlas of Schistosoma mansoni identifies a key regulator of blood feeding. Science. 2020;369:1644–9.
Article
CAS
Google Scholar
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–32.
Article
CAS
Google Scholar
Lambert LA, Mitchell SL. Molecular evolution of the transferrin receptor/glutamate carboxypeptidase II family. J Mol Evol. 2007;64:113–28.
Article
CAS
Google Scholar
Tykvart J, Barinka C, Svoboda M, Navratil V, Soucek R, Hubalek M, et al. Structural and biochemical characterization of a novel aminopeptidase from human intestine. J Biol Chem. 2015;290:11321–36.
Article
CAS
Google Scholar
Tykvart J, Schimer J, Barinkova J, Pachl P, Postova-Slavetinska L, Majer P, et al. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg Med Chem. 2014;22:4099–108.
Article
CAS
Google Scholar
Hlouchova K, Navratil V, Tykvart J, Sacha P, Konvalinka J. GCPII variants, paralogs and orthologs. Curr Med Chem. 2012;19:1316–22.
Article
CAS
Google Scholar
Rovenska M, Hlouchova K, Sacha P, Mlcochova P, Horak V, Zamecnik J, et al. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Prostate. 2008;68:171–82.
Article
CAS
Google Scholar
Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.
CAS
Google Scholar
Navratil M, Ptacek J, Sacha P, Starkova J, Lubkowski J, Barinka C, et al. Structural and biochemical characterization of the folyl-poly-gamma-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II. FEBS J. 2014;281:3228–42.
Article
CAS
Google Scholar
Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med. 1999;5:1396–402.
Article
CAS
Google Scholar
Rajasekaran AK, Anilkumar G, Christiansen JJ. Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol. 2005;288:C975–81.
Article
CAS
Google Scholar
Barinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19:856–70.
Article
CAS
Google Scholar
Bacich DJ, Ramadan E, O’Keefe DS, Bukhari N, Wegorzewska I, Ojeifo O, et al. Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J Neurochem. 2002;83:20–9.
Article
CAS
Google Scholar
Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–62.
Article
CAS
Google Scholar
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol. 2022;22:101450.
Article
CAS
Google Scholar
Tsai G, Stauch-Slusher B, Sim L, Hedreen JC, Rothstein JD, Kuncl R, et al. Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res. 1991;556:151–6.
Article
CAS
Google Scholar
Plaitakis A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophc lateral sclerosis A hypothesis. Ann Neurol. 1990;28:3–8.
Article
CAS
Google Scholar
Sacha P, Zamecnik J, Barinka C, Hlouchova K, Vicha A, Mlcochova P, et al. Expression of glutamate carboxypeptidase II in human brain. Neuroscience. 2007;144:1361–72.
Article
CAS
Google Scholar
Fricker AC, Mok MH, de la Flor R, Shah AJ, Woolley M, Dawson LA, et al. Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology. 2009;56:1060–7.
Article
CAS
Google Scholar
Leontovyc A, Ulrychova L, O’Donoghue AJ, Vondrasek J, Maresova L, Hubalek M, et al. SmSP2: a serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties. PLoS Negl Trop Dis. 2018;12:e0006446.
Article
Google Scholar
Dvorak J, Fajtova P, Ulrychova L, Leontovyc A, Rojo-Arreola L, Suzuki BM, et al. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie. 2016;122:99–109.
Article
CAS
Google Scholar
Stefanic S, Dvorak J, Horn M, Braschi S, Sojka D, Ruelas DS, et al. RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis. 2010;4:e850.
Article
Google Scholar
Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol. 1981;67(2):179–85.
Leontovyc A, Ulrychova L, Horn M, Dvorak J. Collection of excretory/secretory products from individual developmental stages of the blood fluke Schistosoma mansoni. Methods Mol Biol. 2020;2151:55–63.
Article
CAS
Google Scholar
Klusák V, Barinka C, Plechanovová A, Mlcochová P, Konvalinka J, Rulísek L, et al. Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Biochemistry. 2009;48:4126–38.
Article
Google Scholar
Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54:5.6.1–5.6.37.
Bim D, Navratil M, Gutten O, Konvalinka J, Kutil Z, Culka M, et al. Predicting effects of site-directed mutagenesis on enzyme kinetics by QM/MM and QM calculations: a case of glutamate carboxypeptidase II. J Phys Chem B. 2022;126:132–43.
Article
CAS
Google Scholar
Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z, et al. The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem. 2020;295:2614–28.
Article
CAS
Google Scholar
Barinka C, Ptacek J, Richter A, Novakova Z, Morath V, Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng Des Sel. 2016;29:105–15.
Article
CAS
Google Scholar
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.
CAS
Google Scholar
Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1:1559–82.
Article
CAS
Google Scholar
Horn M, Fajtova P, Arreola LR, Ulrychova L, Bartosova-Sojkova P, Franta Z, et al. Trypsin- and chymotrypsin-like serine proteases in Schistosoma mansoni—’The Undiscovered Country’. PLoS Negl Trop Dis. 2014;8:e2766.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar
Ulrychova L, Horn M, Dvorak J. Sensitive fluorescence in situ hybridization on semithin sections of adult Schistosoma mansoni using DIG-labeled RNA probes. Methods Mol Biol. 2020;2151:43–53.
Article
CAS
Google Scholar
Ulrychova L, Ostasov P, Chanova M, Mares M, Horn M, Dvorak J. Spatial expression pattern of serine proteases in the blood fluke Schistosoma mansoni determined by fluorescence RNA in situ hybridization. Parasite Vector. 2021;14(1).
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
CAS
Google Scholar
Jilkova A, Horn M, Rezacova P, Maresova L, Fajtova P, Brynda J, et al. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure. 2014;22:1786–98.
Article
CAS
Google Scholar
Collins JJ 3rd, King RS, Cogswell A, Williams DL, Newmark PA. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis. 2011;5:e1009.
Article
Google Scholar
Dillon GP, Illes JC, Isaacs HV, Wilson RA. Patterns of gene expression in schistosomes: localization by whole mount in situ hybridization. Parasitology. 2007;134:1589–97.
Article
CAS
Google Scholar
Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J Mol Biol. 2008;376:1438–50.
Article
CAS
Google Scholar
Mesters JR, Barinka C, Li W, Tsukamoto T, Majer P, Slusher BS, et al. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25:1375–84.
Article
CAS
Google Scholar
Barinka C, Rovenska M, Mlcochova P, Hlouchova K, Plechanovova A, Majer P, et al. Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II. J Med Chem. 2007;50:3267–73.
Article
CAS
Google Scholar
Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J Mol Biol. 2008;376:1438–50.
Article
CAS
Google Scholar
Barinka C, Rinnova M, Sacha P, Rojas C, Majer P, Slusher BS, et al. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem. 2002;80:477–87.
Article
CAS
Google Scholar
Mlcochova P, Plechanovova A, Barinka C, Mahadevan D, Saldanha JW, Rulisek L, et al. Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesis. FEBS J. 2007;274:4731–41.
Article
CAS
Google Scholar
Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–62.
Article
CAS
Google Scholar
Barinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19:856–70.
Article
CAS
Google Scholar
Pavlicek J, Ptacek J, Barinka C. Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr Med Chem. 2012;19:1300–9.
Article
CAS
Google Scholar
Barinka C, Rinnova M, Sacha P, Rojas C, Majer P, Slusher BS, et al. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem. 2002;80:477–87.
Article
CAS
Google Scholar
Mesters JR, Barinka C, Li WX, Tsukamoto T, Majer P, Slusher BS, et al. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. Embo J. 2006;25:1375–84.
Article
CAS
Google Scholar
Wahlestedt C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov Today. 2006;11:503–8.
Article
CAS
Google Scholar
Vasconcelos EJR, daSilva LF, Pires DS, Lavezzo GM, Pereira ASA, Amaral MS, et al. The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages. Sci Rep. 2017;7:10508.
Article
Google Scholar
Maciel LF, Morales-Vicente DA, Silveira GO, Ribeiro RO, Olberg GGO, Pires DS, et al. Weighted gene co-expression analyses point to long non-coding RNA hub genes at different Schistosoma mansoni life-cycle stages. Front Genet. 2019;10:823.
Article
CAS
Google Scholar
Guidi A, Mansour NR, Paveley RA, Carruthers IM, Besnard J, Hopkins AL, et al. Application of RNAi to genomic drug target validation in Schistosomes. PLoS Negl Trop Dis. 2015;9:e0003801.
Article
Google Scholar
Robinson MB, Blakely RD, Couto R, Coyle JT. Hydrolysis of the brain dipeptide N-acetyl-l-aspartyl-l-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem. 1987;262(30):14498–506.
Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res. 1996;2:1445–51.
CAS
Google Scholar
Barinka C, Sacha P, Sklenar J, Man P, Bezouska K, Slusher BS, et al. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci. 2004;13:1627–35.
Article
CAS
Google Scholar