Skip to main content

Advertisement

  • Research
  • Open Access

Genotypes and public health potential of Enterocytozoon bieneusi and Giardia duodenalis in crab-eating macaques

Contributed equally
Parasites & Vectors201912:254

https://doi.org/10.1186/s13071-019-3511-y

  • Received: 11 March 2019
  • Accepted: 16 May 2019
  • Published:

Abstract

Background

Enterocytozoon bieneusi and Giardia duodenalis are common human and animal pathogens. Studies have increasingly shown that non-human primates (NHPs) are common hosts of these two zoonotic parasites. However, few studies have explored the genetic diversity and public health potential of these pathogens in laboratory monkeys. In this study, we examined the genetic diversity of the two pathogens in crab-eating macaques (Macaca fascicularis) in a commercial facility in Hainan, China.

Results

Enterocytozoon bieneusi and G. duodenalis were detected by PCR analysis in 461/1452 (31.7%) and 469/1452 (32.3%) fecal specimens from the animals, respectively. Significantly higher detection rates of E. bieneusi were detected in males (36.5%, 258/706) than in females (26.7%, 160/599; χ2 = 14.391, P = 0.0001), in animals with loose stools (41.4%, 151/365) than those with normal stool (28.5%, 310/1087; χ2 = 20.83, P < 0.0001), and in animals of over 3 years of age (38.6%, 135/350) than those of 1–3 years (29.6%, 326/1,102; χ2 = 9.90, P = 0.0016). For G. duodenalis, the detection rate in males (33.4%, 236/706) was higher than in females but not statistically significant (30.2%, 181/599; χ2 = 1.54, P = 0.2152), in monkeys with loose stools (41.1%, 150/365) than those with normal stools (29.3%, 319/1087; χ2 = 17.25, P < 0.0001), and in monkeys of 1–3 years of age (36.6%, 403/1102) than those over 3 years (18.9%, 66/350; χ2 = 38.11, P < 0.0001). Nine E. bieneusi genotypes were detected in this study by DNA sequence analysis of the internal transcribed spacer of the rRNA gene, namely Type IV (236/461), Peru8 (42/461), Pongo2 (27/461), Peru11 (12/461), D (4/461) and PigEbITS7 (1/461) previously seen in NHPs as well as humans, and CM1 (119/461), CM2 (17/461) and CM3 (3/461) that had been only detected in NHPs. DNA sequence analyses of the tpi, gdh and bg loci identified all G. duodenalis specimens as having assemblage B. Altogether, eight (4 known and 4 new), seven (6 known and 1 new) and seven (4 known and 3 new) subtypes were seen at the tpi, gdh and bg loci, leading to the detection of 53 multi-locus genotypes (MLG-B-hn01 to MLG-B-hn53). Most of them were genetically related to those previously seen in common Old-World monkeys.

Conclusions

Data from this study indicate a common occurrence of zoonotic genotypes of E. bieneusi and assemblage B of G. duodenalis in farmed crab-eating macaques in Hainan, China.

Keywords

  • Enterocytozoon bieneusi
  • Giardia duodenalis
  • Genotypes
  • Multi-locus genotyping
  • Crab-eating macaques

Background

Giardia duodenalis and Enterocytozoon bieneusi are common human pathogens. At present, there are more than 200 million of annual giardiasis cases in humans, while microsporidiosis is a common cause of diarrhea [1, 2]. The incidence of giardiasis has been reported to be 5.5 per 100,000 people in the UK and 7.5 per 100,000 people in the USA [3]. In China, almost 30 million people are infected with G. duodenalis every year [2]. For E. bieneusi, the detection rates range between 2–78% in industrialized and developing countries [46]. Over 200 giardiasis outbreaks have been reported in the world during the period 2004–2016, while E. bieneusi also caused an outbreak in France [69].

Non-human primates (NHPs) are important experimental animals in public health research because of their high genetic similarity to humans [10]. A growing number of studies have found that NHPs are the hosts of many parasites, including gastrointestinal protists E. bieneusi and G. duodenalis, which are transmitted in similar fecal-oral routes [2, 11]. In addition to affecting the health and wellbeing of these laboratory animals, both pathogens are potentially zoonotic, causing diseases in humans [12, 13].

Of the 17 known human-pathogenic microsporidian species, E. bieneusi is the most common [14]. Based on sequence analysis of the internal transcribed spacer (ITS) of the rRNA gene, more than 200 E. bieneusi genotypes have been identified [15]. In phylogenetic analysis, these E. bieneusi genotypes are divided into at least 11 groups [16]. Among them, Group 1 contains most genotypes found in humans and many genotypes in animals, thus is considered to be the zoonotic group. In contrast, Groups 2–11 include genotypes found in specific groups of hosts, including humans, thus are considered more host-specific. There is also a so-called outlier group in dogs [1722]. Thus, genotyping E. bieneusi in NHPs can help us understand the zoonotic potential of E. bieneusi in these animals.

At present, more than 50 E. bieneusi genotypes have been found in NHPs, most of which belong to Group 1 [23]. Among them, genotypes A, D, Type IV, EbpC, Peru7, Peru8, Peru11, PigEBITS7, Henan-V, WL15, I and BEB6 have been found in humans in several countries, including China [6, 13, 15, 18, 2430]. Of these, genotypes A and I appear to be more common in diarrheic children in China than other genotypes, suggesting that there could be differences in infectivity or virulence among E. bieneusi genotypes [6, 31]. Therefore, NHPs are potential reservoir hosts for zoonotic transmission of E. bieneusi.

Similarly, eight distinct G. duodenalis assemblages (A-H) have been identified by genetic analysis of triosephosphate isomerase (tpi), ssrRNA, β-giardin (bg), glutamate dehydrogenase (gdh) and other genes [2, 32, 33]. Among them, assemblages A and B are most commonly found in humans and NHPs, assemblages C and D are mainly detected in canines, assemblage E mainly infects ruminants and other hoofed animals, whereas assemblages F, G and H usually infect cats, rodents and seals, respectively [2]. Similar to E. bieneusi, genotyping G. duodenalis also can help us to understand the transmission of this pathogen.

NHPs are also potential reservoir hosts for zoonotic transmission of G. duodenalis [2, 12]. In previous studies, assemblages A, B and E have been identified in humans and NHPs [34]. Among them, assemblage B appears to be most common, while assemblage E is only occasionally detected [3438]. Although assemblage A has been further classified into three major sub-assemblages (AI–AIII) by sequence analysis of several genetic loci, consistent secondary classification of assemblage B has not been established [2, 12, 39, 40]. Multilocus genotyping (MLG) has been used in several studies to understand the host specificity and zoonotic potential of assemblage B in human and NHPs [4144]. Controversies exist on the differences in virulence between assemblages A and B in humans [45]. There are no such studies on G. duodenalis in NHPs.

In the present study, we examined the prevalence of E. bieneusi and G. duodenalis in fecal specimens from commercial crab-eating macaques (Macaca fascicularis) in Hainan. The genetic diversity of the two pathogen species was assessed using sequence analysis of the ITS (E. bieneusi) and using MLG analysis of the tpi, gdh and bg gene (G. duodenalis). The data generated were used to explore the human-infective potential of these two common gastrointestinal parasites in NHPs.

Methods

Specimen collection

A total of 1452 fecal specimens were collected in April 2016, June 2017, October 2017 and January 2018 from laboratory crab-eating macaques kept on a commercial farm. The farm was founded in 2003 and has been awarded full accreditation from the International Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) since 2008, with over 20,000 animals at the sampling time. All animals were kept in separate cages (1 × 1 × 1 m) after they were born on the farm, with approximately 30 animals kept in each room of ~ 60 m2. The cages were elevated 1 m from the ground so that the feces could fall onto the ground. Every monkey had contact with animals in the neighboring cages. The rooms were cleaned every morning and afternoon to ensure a clean living environment. Feed, fruits (apple, banana and peach) and drinking water were regularly distributed by farm staff to each cage every day.

The sampling plan took into consideration the number, age and sex of animals on the farm, and the needed number of positive specimens to generate data for a meaningful assessment of the distribution and human-infective potential of E. bieneusi and G. duodenalis genotypes in these animals. Among the sampled animals, 706 were male, 599 were female and 147 sampled animals had missing information on the sex. The sampled animals belonged to two age groups: 1102 were 1–3 years-old and 350 were adult monkeys older than 3 years. Regarding the latter, as monkeys over 4 years-old were often sold, the oldest animals sampled in the study were 5 years-old. At the time of sampling, 365 monkeys had loose stools, as defined by runny fecal consistency, and 1087 monkeys were apparently normal. The specimens were stored in 2.5% potassium dichromate solution at 4 °C prior to DNA extraction.

DNA extraction

The stored fecal specimens were washed three times with distilled water by centrifugation at 2000×g for 10 min. Genomic DNA was extracted from the washed fecal material using the FastDNA SPIN Kit for soil (MP Biomedicals, Santa Ana, CA) [46]. DNA was stored at − 20 °C before being used in PCR analysis within one year.

Detection and genotyping of Enterocytozoon bieneusi and Giardia duodenalis

Enterocytozoon bieneusi was detected by nested PCR amplification of a 392-bp fragment of the rRNA gene containing the entire ITS sequence [47]. The genotypes of E. bieneusi found in this study were determined by sequencing the PCR products and comparing the sequences obtained from the specimens with the reference sequences from known genotypes. The established genotype nomenclature was used in naming E. bieneusi genotypes identified in this study [15].

Giardia duodenalis was detected by nested PCR amplification of a 530-bp fragment of the tpi gene, a 511-bp fragment of the bg gene and a 599-bp fragment of the gdh gene [4850]. The specimen was considered G. duodenalis-positive if any of the PCRs generated the expected PCR product. The genotypes of G. duodenalis found in this study were identified by sequencing PCR products from G. duodenalis-positive specimens and comparing sequences obtained with the reference sequences from the known genotypes at each genetic locus.

Sequence analysis

The secondary PCR products of the ITS, tpi, bg and gdh genes were sequenced in both directions on an ABI 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Nucleotide sequences generated were assembled and edited with software ChromasPro v.1.32 (http://technelysium.com.au/ChromasPro.html), and aligned with reference sequences from GenBank by using ClustalX (http://clustal.org).

Phylogenetic analysis

To explore genetic diversity within the assemblage B of G. duodenalis, tpi, bg and gdh sequences from specimens with complete data at the three genetic loci were concatenated to form multi-locus sequences. They were compared with the reference sequences MLG1-MLG15 from NHPs, and Sweh001, Sweh059, Sweh074, Sweh107, Sweh136, Sweh158, ECUST5414, ECUST1710, ECUST4064 and ECUST981 from humans [28, 34, 51]. A maximum likelihood (ML) tree was constructed in MEGA v.6 (https://www.megasoftware.net) using evolutionary distances calculated by the commonly used general time reversible model. The reliability of clusters formed was assessed by bootstrap analysis using 1000 replicates.

Statistical analysis

Differences in E. bieneusi and G. duodenalis detection rates between groups of different sex, age, or fecal consistency were assessed by using the Chi-square test implemented in SPSS Statistics v.20.0 (IBM Corp., Armonk, NY, USA). The difference was considered significant when P < 0.05.

Results

Occurrence of E. bieneusi and G. duodenalis in crab-eating macaques

Of the 1452 specimens analyzed, 461 (31.7%) were positive for E. bieneusi. Significantly higher detection rates of E. bieneusi were identified in animals with loose stools (41.4%, 151/365) than animals with normal stools (28.5%, 310/1087; χ2 = 20.83, P < 0.0001), in males (36.5%, 258/706) than females (26.7%, 160/599; χ2 = 14.391, P = 0.0001), and in old animals (> 3 years; 38.6%, 135/350) than young animals (1–3 years; 29.6%, 326/1102; χ2 = 9.90, P = 0.0016; Table 1).
Table 1

Distribution of Giardia duodenalis and Enterocytozoon bieneusi genotypes in crab-eating macaques in Hainan, China by fecal consistency, sex and age

Specimen

Sample size

Giardia duodenalis a

Enterocytozoon bieneusi

No. positive (%)

Genotype (n)

No. positive (%)

Genotype (n)

Loose stoolsb

365

150 (41.1)

B (150)

151 (41.4)

Type IV (74)

CM1 (40)

Pongo2 (12)

Peru8 (11)

CM2 (8)

Peru11 (4)

PigEbITS7 (1)

D (1)

Normal stools

1087

319 (29.3)

B (319)

310 (28.5)

Type IV (162)

CM1 (79)

Peru8 (31)

Pongo2 (15)

CM2 (9)

Peru11 (8)

CM3 (3)

D (3)

Malec

706

236 (33.4)

B (236)

258 (36.5)

Type IV (134)

CM1 (56)

Peru8 (23)

Pongo2 (18)

CM2 (11)

Peru11 (10)

D (3)

CM3 (2)

PigEbITS7 (1)

Female

599

181 (30.2)

B (181)

160 (26.7)

Type IV (78)

CM1 (53)

Peru8 (14)

Pongo2 (9)

CM2 (5)

D (1)

Unknown

147

52 (35.4)

B (52)

43 (29.3)

Type IV (24)

CM1 (10)

Peru8 (5)

Peru11 (2)

CM2 (1)

CM3 (1)

1–3 years-oldd

1102

403 (36.6)

B (403)

326 (29.6)

Type IV (160)

CM1 (95)

Peru8 (25)

Pongo2 (17)

CM2 (14)

Peru11 (7)

D (4)

CM3 (3)

PigEbITS7 (1)

> 3 years-old

350

66 (18.9)

B (66)

135 (38.6)

Type IV (76)

CM1 (24)

Peru8 (17)

Pongo2 (10)

Peru11 (5)

CM2 (3)

Total

1452

469 (32.3)

B (469)

461 (31.7)

Type IV (236)

CM1 (119)

Peru8 (42)

Pongo2 (27)

CM2 (17)

Peru11 (12)

D (4)

CM3 (3)

PigEbITS7 (1)

aGiardia duodenalis detection rates were based on PCR analysis of the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh) and β-giardin (bg) genes

bDetection rates of G. duodenalis (χ2 = 17.25, P < 0.0001) and E. bieneusi (χ2 = 20.83, P < 0.0001) are significantly higher in animals with loose stools than in those with normal stools

cThe detection rate of E. bieneusi is significant higher in males than in females (χ2 = 14.391, P = 0.0001)

dThe detection rate of G. duodenalis is significantly higher in 1–3 year-old animals than in older animals (χ2 = 38.11, P < 0.0001). In contrast, the detection rate of E. bieneusi is significantly lower in 1–3 year-old animals than > 3 years (χ2 = 9.90, P = 0.0016)

For G. duodenalis, 362 (24.9%) specimens were positive by tpi PCR, 315 (21.7%) by bg PCR and 240 (16.5%) by gdh PCR. Altogether, 469 (32.3%) specimens were positive for G. duodenalis in at least one PCR. Significantly higher detection rates of G. duodenalis were found in animals with loose stools (41.1%, 150/365) than animals with normal stools (29.3%, 319/1087; χ2 = 17.25, P < 0.0001), and in 1–3 year-old monkeys (36.6%, 403/1102) than older animals (18.9%, 66/350; χ2 = 38.11, P < 0.0001). Nevertheless, detection rates of G. duodenalis were comparable between males (33.4%, 236/706) and females (31.2%, 233/746; Table 1).

Distribution of E. bieneusi genotypes

Nine E. bieneusi genotypes were obtained from PCR-positive specimens by sequence analysis, namely Type IV (236/461), CM1 (119/461), Peru8 (42/461), Pongo2 (27/461), CM2 (17/461), Peru11 (12/461), D (4/461), CM3 (3/461) and PigEbITS7 (1/461).

Among them, eight E. bieneusi genotypes were found in animals with loose stools, namely Type IV (74/151), CM1 (40/151), Pongo2 (12/151), Peru8 (11/151), CM2 (8/151), Peru11 (4/151), PigEbITS7 (1/151) and D (1/151). Similarly, eight E. bieneusi genotypes were detected in animals with normal stools, namely Type IV (162/310), CM1 (79/310), Peru8 (31/310), Pongo2 (15/310), CM2 (9/310), Peru11 (8/310), CM3 (3/310) and D (3/310). A similar distribution of E. bieneusi genotypes was also seen between male and female monkeys as well as young and old monkeys (Table 1).

Distribution of G. duodenalis genotypes and subtypes

Sequence analysis of PCR products from the tpi, bg and gdh genes showed that all 469 G. duodenalis-positive specimens had assemblage B (Table 1). Eight G. duodenalis subtypes were obtained from the 362 PCR-positive specimens at the tpi locus, including four known and four new subtypes. Among them, B-sh01 (n = 108), B1 (n = 75), B6 (n = 27) and B2 (n = 17) found in this study were identical to reference sequences JX994245, KC441076, GU564284 and KC441077, respectively. The new subtypes B-hn02 (n = 78), B-hn04 (n = 32), B-hn01 (n = 13) and B-hn03 (n = 12) had one, one, two and one single nucleotide polymorphism (SNP), respectively, compared with the reference sequence MF095053 (Table 2).
Table 2

Intra-genotypic nucleotide substitutions in the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh) and β-giardin (bg) genes of Giardia duodenalis in crab-eating macaques in Hainan, China

tpi

gdh

bg

Subtype (n)

GenBank ID

Nucleotide at position

Subtype (n)

GenBank ID

Nucleotide at position

Subtype (n)

GenBank ID

Nucleotide at position

Ref. sequence

MF095053

25

28

67

181

190

196

247

256

331

340

499

Ref. sequence

KM190707

297

561

666

681

786

793

876

Ref. sequence

KY696837

91

195

211

226

276

311

352

391

A

T

C

G

T

A

G

C

G

G

G

C

T

T

C

C

G

G

A

A

T

T

A

A

C

A

B-sh01 (108)

JX994245

           

B-VANC/96/UBC/127 (162)

KM190707

       

B-CD10 (171)

KY696837

        

B1 (75)

KC441076

  

T

 

C

      

B-VANC/87/UBC/8 (40)

KM190714

 

C

   

A

 

B2 (59)

KC441079

G

  

C

  

T

 

B6 (27)

GU564284

     

G

     

B-VANC/91/UBC/67 (9)

KM190708

    

T

A

 

B-Egyh8 (58)

MG736242

G

  

C

    

B2 (17)

KC441077

G

C

    

A

    

BIV (7)

KF679733

 

C

     

B-VANC/91/UBC/67 (5)

KM190799

G

       

B-hn01 (13)a

MK262843

   

A

     

A

 

B-Afu97 (5)

HM134210

 

C

 

T

 

A

 

B-hn06a (1)

MK282648

    

G

G

  

B-hn02 (78)a

MK262844

        

A

  

B-sh03 (2)

JX994233

T

 

C

    

B-hn07a (1)

MK282649

 

G

      

B-hn03a (12)

MK282645

       

T

   

B-hn05a (15)

MK282647

 

C

   

A

A

B-hn08a (20)

MK282650

G

 

G

C

   

G

B-hn04 (32)a

MK282646

          

A

                   

aNew subtype identified in this study

Seven G. duodenalis subtypes were present among the 315 PCR-positive specimens at the bg locus, including four known and three new subtypes. Among them, B-CD10 (n = 171), B2 (n = 59), B-Egyh8 (n = 58) and B-VANC/91/UBC/67 (n = 5) found in this study were identical to reference sequences KY696837, MG736242, KC441079 and KM190799, respectively. The new subtypes B-hn08 (n = 20), B-hn06 (n = 1) and B-hn07 (n = 1) had four, two, and one SNP, respectively, compared with the reference sequence KY696837 (Table 2).

Seven subtypes of G. duodenalis assemblage B were detected among the 240 PCR-positive specimens at the gdh locus, including six known ones and one new subtype. Among them, B-VANC/96/UBC/127 (n = 162), B-VANC/87/UBC/8 (n = 40), B-VANC/91/UBC/67 (n = 9), BIV (n = 7), B-Afu97 (n = 5) and B-sh03 (n = 2) found in this study were identical to the reference sequences KM190707, KM190714, KM190708, KF679733, HM134210 and JX994233, respectively. The new subtype B-hn05 (n = 15) had three SNPs compared with the reference sequence KM190707 (Table 2).

Multilocus genotyping of assemblage B

Of the 469 specimens positive for G. duodenalis assemblage B, 161 were positive by PCR at all three genetic loci. They belonged to 53 MLGs (MLG-B-hn01 to MLG-B-hn53). Among them, MLG-B-hn01 (16.7%) was the most common, followed by MLG-B-hn02, MLG-B-hn03 and MLG-B-hn04, with frequencies of 7.5%, 6.2%, and 5.0%, respectively. In contrast, the frequency of MLG-B-hn05 and MLG-B-hn06 was 4.3%, the frequency of MLG-B-hn07 and MLG-B-hn08 was 3.7%, while the remaining MLGs were each seen in fewer than five specimens (Table 3).
Table 3

Multilocus sequence genotypes of Giardia duodenalis assemblage B in crab-eating macaques in Hainan, China

MLGsa

Subtype

No. of specimens

tpi

gdh

bg

MLG-B-hn01

B-sh01

B-VANC/96/UBC/127

B-CD10

27

MLG-B-hn02

B-hn02b

B-VANC/96/UBC/127

B-CD10

12

MLG-B-hn03

B1

B-VANC/96/UBC/127

B-Egyh8

10

MLG-B-hn04

B-hn03b

B-VANC/96/UBC/127

B-CD10

8

MLG-B-hn05

B1

B-VANC/96/UBC/127

B-CD10

7

MLG-B-hn06

B-sh01

B-VANC/87/UBC/8

B-CD10

7

MLG-B-hn07

B-hn02b

B-VANC/96/UBC/127

B2

6

MLG-B-hn08

B2

B-VANC/96/UBC/127

B-CD10

6

MLG-B-hn09

B-sh01

B-VANC/96/UBC/127

B2

4

MLG-B-hn10

B-hn02b

B-VANC/96/UBC/127

B-Egyh8

4

MLG-B-hn11

B1

B-VANC/96/UBC/127

B2

4

MLG-B-hn12

B-hn01b

B-VANC/96/UBC/127

B-CD10

3

MLG-B-hn13

B1

B-VANC/91/UBC/67

B-CD10

3

MLG-B-hn14

B1

B-hn05b

B-CD10

3

MLG-B-hn15

B6

B-VANC/96/UBC/127

B-CD10

3

MLG-B-hn16

B-sh01

B-VANC/87/UBC/8

B-Egyh8

3

MLG-B-hn17

B-sh01

B-VANC/87/UBC/8

B2

3

MLG-B-hn18

B1

B-VANC/87/UBC/8

B-CD10

2

MLG-B-hn19

B6

B-VANC/91/UBC/67

B-Egyh8

2

MLG-B-hn20

B-sh01

B-VANC/96/UBC/127

B-Egyh8

2

MLG-B-hn21

B-hn02b

BIV

B2

2

MLG-B-hn22

B-hn04b

B-VANC/96/UBC/127

B2

2

MLG-B-hn23

B-hn02b

B-hn05b

B-hn08b

2

MLG-B-hn24

B1

B-VANC/96/UBC/127

B-hn08b

2

MLG-B-hn25

B-sh01

B-VANC/91/UBC/67

B-CD10

2

MLG-B-hn26

B-sh01

B-hn05b

B-CD10

2

MLG-B-hn27

B1

B-VANC/87/UBC/8

B2

2

MLG-B-hn28

B1

B-VANC/87/UBC/8

B-hn08b

2

MLG-B-hn29

B-hn01b

B-VANC/87/UBC/8

B-CD10

2

MLG-B-hn30

B2

B-hn05b

B2

1

MLG-B-hn31

B1

B-sh03

B-CD10

1

MLG-B-hn32

B1

B-hn05b

B2

1

MLG-B-hn33

B-sh01

B-Afu97

B-CD10

1

MLG-B-hn34

B-hn02b

BIV

B-CD10

1

MLG-B-hn35

B6

B-hn05b

B-CD10

1

MLG-B-hn36

B-hn04b

B-VANC/91/UBC/67

B-CD10

1

MLG-B-hn37

B-hn04b

B-VANC/91/UBC/67

B-Egyh8

1

MLG-B-hn38

B1

B-VANC/87/UBC/8

B-Egyh8

1

MLG-B-hn39

B6

B-hn05b

B-Egyh8

1

MLG-B-hn40

B1

B-hn05b

B-Egyh8

1

MLG-B-hn41

B2

BIV

B2

1

MLG-B-hn42

B-sh01

B-hn05b

B2

1

MLG-B-hn43

B-hn04b

B-hn05b

B2

1

MLG-B-hn44

B-hn01b

B-VANC/96/UBC/127

B2

1

MLG-B-hn45

B-hn03b

B-VANC/96/UBC/127

B2

1

MLG-B-hn46

B-hn02b

B-VANC/87/UBC/8

B-hn08b

1

MLG-B-hn47

B-sh01

B-VANC/96/UBC/127

B-VANC/91/UBC/67

1

MLG-B-hn48

B6

B-Afu97

B-VANC/91/UBC/67

1

MLG-B-hn49

B2

B-VANC/96/UBC/127

B-hn08b

1

MLG-B-hn50

B-hn04b

B-VANC/87/UBC/8

B-CD10

1

MLG-B-hn51

B6

B-VANC/87/UBC/8

B-CD10

1

MLG-B-hn52

B1

B-VANC/87/UBC/8

B-VANC/91/UBC/67

1

MLG-B-hn53

B1

BIV

B-Egyh8

1

aMLGs are named based on subtypes at the tpi, gdh and bg loci

bNew subtype identified in this study

Phylogenetic relationship of G. duodenalis assemblage B

Phylogenetic analysis of concatenated sequences of the 53 assemblage B MLGs in this study, and those from previous studies [28, 34, 51] showed that most MLGs from this study were related to MLGs previously found in Old World monkeys (MLG-3, MLG-4, MLG-7, MLG-8, MLG-14 and MLG-15). However, one of the MLGs, MLG-B-hn31, seen in one animal, clustered together with MLGs in humans. In addition, MLG-B-hn42 and MLG-B-hn43 were genetically separated from Old World monkeys, ring-tailed lemurs and humans (Fig. 1).
Fig. 1
Fig. 1

Phylogenetic relationship of multilocus genotypes (MLGs) of Giardia duodenalis assemblage B inferred by the maximum likelihood analysis of concatenated tpi, gdh and bg nucleotide sequences using genetic distances calculated by the general time reversible model (GTR). Reference sequences (MLG1-15, isolates Sweh001, Sweh059, Sweh074, Sweh107, Sweh136, Sweh158, ECUST1710, ECUST5414, ECUST4064 and ECUST981) used are from the studies by Lebbad et al. [51], Karim et al. [18] and Wang et al. [27]. Bootstrap values greater than 50% from 1000 replicates are shown on nodes. MLGs identified in the present study are in bold. The scale-bar indicates 50 nucleotide substitutions per 100 nucleotides

Discussion

Data from this study suggests that crab-eating macaques in Hainan, China are commonly infected with E. bieneusi. In this study, the detection rate of E. bieneusi in these animals was 31.7% (461/1452). This is higher than the reported detection rates in NHPs in various countries [5255]. Similarly, it is mostly higher than detection rates in studies of E. bieneusi in NHPs in China [18, 19, 35, 50, 5659]. Many of the studies reporting low detection rates of E. bieneusi in NHPs were performed using wild, captive and zoo animals [19, 35, 52, 54, 55, 57]. The present report represents the first one carried out using a large number of laboratory NHPs.

Crab-eating macaques are apparently infected with zoonotic E. bieneusi genotypes. In this study, all nine E. bieneusi genotypes detected in these animals belong to the zoonotic Group 1 (Table 1). Among them, Type IV, D, Peru8, Peru11 and PigEbITS7 are known human pathogens in many countries [13, 15, 2629, 31, 60, 61]. Others such as CM1, CM2 and CM3 have been thus far only found in NHPs in China [18, 19, 62], but this is probably because only a small number of studies have been performed on human E. bieneusi infection within the country. The remaining genotype, Pongo2, was reported in China for the first time in this study. This genotype was initially seen in orangutans in Indonesia, indicating that it has the capability to infect a broad range of NHPs [53].

Laboratory crab-eating macaques are also apparently common hosts of G. duodenalis. In this study, the detection rate of G. duodenalis was 32.3% (469/1452) in Hainan, China. This confirms the prevalence of this pathogen in NHPs in various countries [36, 37, 63, 64] and different areas within China [34, 35, 38, 44, 50, 57, 65]. The very high detection rate of G. duodenalis as well as E. bieneusi in the present study could be attributed to the intensive farming of NHPs in this study, which congregates numerous susceptible individuals in confined areas.

To date, assemblages A, B and E of G. duodenalis have been reported in NHPs [34, 38, 50, 54, 6567]. Among them, assemblage B is the most common genotype in different species of NHPs, including various monkeys, lemurs, gibbons, chimpanzees and gorillas [34, 3638, 50, 57, 6365]. It is also common in humans in both developing and industrialized countries, and is more common than the other major human-pathogenic genotype, assemblage A [2, 12, 28]. In this study, assemblage B was the only G. duodenalis genotype in the crab-eating macaque. This could have been due to the confined nature of animals in the facility, which limits the introduction of new G. duodenalis genotypes. Nevertheless, a high genetic heterogeneity of assemblage B was seen in animals in the laboratory facility, as revealed by subtype analysis at three genetic loci.

The zoonotic potential of G. duodenalis assemblage B in crab-eating macaques was supported by subtype analysis of specimens. Of the eight subtypes detected at the tpi locus, B-sh01 (JX994245) and B6 (GU564284) have been previously found in humans [28, 68]. Similarly, among the six known subtypes at the gdh locus, B-sh03 (JX994233) and B-VANC/87/UBC/8 (KM190714) have been previously found in humans [28, 69]. Likewise, among the four known bg subtypes, B-Egyh8 (MG736242) has been previously found in humans [69]. Therefore, many of the known subtypes of G. duodenalis obtained in this study at individual genetic loci had been previously found in humans, supporting the human-pathogenic potential of the assemblage B in crab-eating macaques.

Nevertheless, there appears to be some host segregation within assemblage B of G. duodenalis [34]. In this study, MLG analysis has identified 53 MLGs. Phylogenetic analysis showed that only MLG-B-hn31 is genetically similar to MLGs of assemblage B isolates from humans in China and Sweden [28, 51]. In contrast, most of other MLGs were genetically related to assemblage B isolates in pig-tailed macaques, rhesus macaques, golden monkeys, yellow baboons and green monkeys, all common Old-World monkeys. They were different from MLGs in ring-tailed lemurs, which are natives of the island nation Madagascar and evolved independently from monkeys and apes.

Conclusions

In this study, we have shown a frequent occurrence and high genetic diversity E. bieneusi and G. duodenalis subtypes in crab-eating macaques in one commercial laboratory animal facility in Hainan, China. Most of the E. bieneusi genotypes and G. duodenalis assemblage B subtypes are potentially zoonotic. Additional genetic characterizations of these pathogens at other genetic loci, including more conservative ones for G. duodenalis, are needed to better understand the transmission of these pathogens and possible occurrence of host segregation within G. duodenalis assemblage B. Measures should be implemented at the commercial facility to reduce the transmission of enteric parasites.

Notes

Abbreviations

PCR: 

polymerase chain reaction

MLG: 

multi-locus genotype

bg

beta-giardia

gdh

glutamate dehydrogenase

tpi

triosephosphate isomerase

ITS: 

internal transcribed spacer

Declarations

Acknowledgements

We thank the farm owner and staff for their assistance in sample collection during this study.

Funding

This work was supported by the National Natural Science Foundation of China (31630078, 31602042 and 31425025).

Authors’ contributions

YaF and LX conceived and designed the experiments; LC, WJ and YuF performed the experiments; LC, JZ, WJ and YuF analyzed the data; LC, YaF and LX wrote the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The research was reviewed and approved by the Research Ethics Committee of the East China University of Science and Technology, with the approval number of 2015018. Permission was obtained from the farm owner for the specimen collection. Animals were handled in accordance with the Animal Ethics Procedures and Guidelines of the People’s Republic of China. The specimens used in the study consisted of fecal droppings collected from the floor of cages in the animal facility, with no animal handling during the specimen collection.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237, China
(2)
Laboratory of Tropical Veterinary Medicine and Vector Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
(3)
College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China

References

  1. Lobo ML, Xiao L, Antunes F, Matos O. Microsporidia as emerging pathogens and the implication for public health: a 10-year study on HIV-positive and -negative patients. Int J Parasitol. 2012;42:197–205.View ArticleGoogle Scholar
  2. Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev. 2011;24:110–40.View ArticleGoogle Scholar
  3. Yoder JS, Harral C, Beach MJ. Giardiasis surveillance— United States, 2006–2008. MMWR Surveill Summ. 2010;59:15–25.PubMedGoogle Scholar
  4. Khanduja S, Ghoshal U, Agarwal V, Pant P, Ghoshal UC. Identification and genotyping of Enterocytozoon bieneusi among human immunodeficiency virus infected patients. J Infect Public Health. 2017;10:31–40.View ArticleGoogle Scholar
  5. Tavalla M, Mardani-Kateki M, Abdizadeh R, Nashibi R, Rafie A, Khademvatan S. Molecular identification of Enterocytozoon bieneusi and Encephalitozoon spp. in immunodeficient patients in Ahvaz, Southwest of Iran. Acta Trop. 2017;172:107–12.View ArticleGoogle Scholar
  6. Zhang X, Wang Z, Su Y, Liang X, Sun X, Peng S, et al. Identification and genotyping of Enterocytozoon bieneusi in China. J Clin Microbiol. 2011;49:2006–8.View ArticleGoogle Scholar
  7. Efstratiou A, Ongerth JE, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2011–2016. Water Res. 2017;114:14–22.View ArticleGoogle Scholar
  8. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004–2010. Water Res. 2011;45:6603–14.View ArticleGoogle Scholar
  9. Cotte L, Rabodonirina M, Chapuis F, Bailly F, Bissuel F, Raynal C, et al. Waterborne outbreak of intestinal microsporidiosis in persons with and without human immunodeficiency virus infection. J Infect Dis. 1999;180:2003–8.View ArticleGoogle Scholar
  10. Messaoudi I, Estep R, Robinson B, Wong SW. Nonhuman primate models of human immunology. Antioxid Redox Signal. 2011;14:261–73.View ArticleGoogle Scholar
  11. Mathis A, Weber R, Deplazes P. Zoonotic potential of the microsporidia. Clin Microbiol Rev. 2005;18:423–45.View ArticleGoogle Scholar
  12. Ryan U, Caccio SM. Zoonotic potential of Giardia. Int J Parasitol. 2013;43:943–56.View ArticleGoogle Scholar
  13. Matos O, Lobo ML, Xiao L. Epidemiology of Enterocytozoon bieneusi infection in humans. J Parasitol Res. 2012;2012:981424.View ArticleGoogle Scholar
  14. Stentiford GD, Becnel J, Weiss LM, Keeling PJ, Didier ES, Williams BP, et al. Microsporidia-emergent pathogens in the global food chain. Trends Parasitol. 2016;32:336–48.View ArticleGoogle Scholar
  15. Santin M, Fayer R. Microsporidiosis: Enterocytozoon bieneusi in domesticated and wild animals. Res Vet Sci. 2011;90:363–71.View ArticleGoogle Scholar
  16. Zhang Y, Koehler AV, Wang T, Haydon SR, Gasser RB. New operational taxonomic units of Enterocytozoon in three marsupial species. Parasit Vectors. 2018;11:371.View ArticleGoogle Scholar
  17. Guo Y, Alderisio KA, Yang W, Cama V, Feng Y, Xiao L. Host specificity and source of Enterocytozoon bieneusi genotypes in a drinking source watershed. Appl Environ Microbiol. 2014;80:218–25.View ArticleGoogle Scholar
  18. Karim MR, Dong H, Li T, Yu F, Li D, Zhang L, et al. Predomination and new genotypes of Enterocytozoon bieneusi in captive nonhuman primates in zoos in China: high genetic diversity and zoonotic significance. PLoS ONE. 2015;10:e0117991.View ArticleGoogle Scholar
  19. Karim MR, Wang R, Dong H, Zhang L, Li J, Zhang S, et al. Genetic polymorphism and zoonotic potential of Enterocytozoon bieneusi from nonhuman primates in China. Appl Environ Microbiol. 2014;80:1893–8.View ArticleGoogle Scholar
  20. Li N, Xiao L, Wang L, Zhao S, Zhao X, Duan L, et al. Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater. PLoS Negl Trop Dis. 2012;6:e1809.View ArticleGoogle Scholar
  21. Thellier M, Breton J. Enterocytozoon bieneusi in human and animals, focus on laboratory identification and molecular epidemiology. Parasite. 2008;15:349–58.View ArticleGoogle Scholar
  22. Zhang Y, Koehler AV, Wang T, Robertson GJ, Bradbury RS, Gasser RB. Enterocytozoon bieneusi genotypes in people with gastrointestinal disorders in Queensland and Western Australia. Infect Genet Evol. 2018;65:293–9.View ArticleGoogle Scholar
  23. Li J, Dong H, Wang R, Yu F, Wu Y, Chang Y, et al. An investigation of parasitic infections and review of molecular characterization of the intestinal protozoa in nonhuman primates in China from 2009 to 2015. Int J Parasitol Parasites Wildl. 2017;6:8–15.View ArticleGoogle Scholar
  24. Akinbo FO, Okaka CE, Omoregie R, Adamu H, Xiao L. Unusual Enterocytozoon bieneusi genotypes and Cryptosporidium hominis subtypes in HIV-infected patients on highly active antiretroviral therapy. Am J Trop Med Hyg. 2013;89:157–61.View ArticleGoogle Scholar
  25. Mori H, Mahittikorn A, Thammasonthijarern N, Chaisiri K, Rojekittikhun W, Sukthana Y. Presence of zoonotic Enterocytozoon bieneusi in cats in a temple in central Thailand. Vet Parasitol. 2013;197:696–701.View ArticleGoogle Scholar
  26. Wang SS, Wang RJ, Fan XC, Liu TL, Zhang LX, Zhao GH. Prevalence and genotypes of Enterocytozoon bieneusi in China. Acta Trop. 2018;183:142–52.View ArticleGoogle Scholar
  27. Wang L, Zhang H, Zhao X, Zhang L, Zhang G, Guo M, et al. Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes in HIV-positive patients on antiretroviral therapy. J Clin Microbiol. 2013;51:557–63.View ArticleGoogle Scholar
  28. Wang L, Xiao L, Duan L, Ye J, Guo Y, Guo M, et al. Concurrent infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium difficile in children during a cryptosporidiosis outbreak in a pediatric hospital in China. PLoS Negl Trop Dis. 2013;7:e2437.View ArticleGoogle Scholar
  29. Wang T, Fan Y, Koehler AV, Ma G, Li T, Hu M, et al. First survey of Cryptosporidium, Giardia and Enterocytozoon in diarrhoeic children from Wuhan, China. Infect Genet Evol. 2017;51:127–31.View ArticleGoogle Scholar
  30. Yang J, Song M, Wan Q, Li Y, Lu Y, Jiang Y, et al. Enterocytozoon bieneusi genotypes in children in Northeast China and assessment of risk of zoonotic transmission. J Clin Microbiol. 2014;52:4363–7.View ArticleGoogle Scholar
  31. Santin M, Fayer R. Enterocytozoon bieneusi genotype nomenclature based on the internal transcribed spacer sequence: a consensus. J Eukaryot Microbiol. 2009;56:34–8.View ArticleGoogle Scholar
  32. Caccio SM, Lalle M, Svard SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol. 2018;66:335–45.View ArticleGoogle Scholar
  33. Heyworth MF. Giardia duodenalis genetic assemblages and hosts. Parasite. 2016;23:13.View ArticleGoogle Scholar
  34. Karim MR, Wang R, Yu F, Li T, Dong H, Li D, et al. Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: geographical segregation and host-adaptation of assemblage B isolates. Infect Genet Evol. 2015;30:82–8.View ArticleGoogle Scholar
  35. Du SZ, Zhao GH, Shao JF, Fang YQ, Tian GR, Zhang LX, et al. Cryptosporidium spp., Giardia intestinalis, and Enterocytozoon bieneusi in captive non-human primates in Qinling Mountains. Korean J Parasitol. 2015;53:395–402.View ArticleGoogle Scholar
  36. Johnston AR, Gillespie TR, Rwego IB, McLachlan TL, Kent AD, Goldberg TL. Molecular epidemiology of cross-species Giardia duodenalis transmission in western Uganda. PLoS Negl Trop Dis. 2010;4:e683.View ArticleGoogle Scholar
  37. Debenham JJ, Tysnes K, Khunger S, Robertson LJ. Occurrence of Giardia, Cryptosporidium, and Entamoeba in wild rhesus macaques (Macaca mulatta) living in urban and semi-rural North-West India. Int J Parasitol Parasites Wildl. 2017;6:29–34.View ArticleGoogle Scholar
  38. Sricharern W, Inpankaew T, Keawmongkol S, Supanam J, Stich RW, Jittapalapong S. Molecular detection and prevalence of Giardia duodenalis and Cryptosporidium spp. among long-tailed macaques (Macaca fascicularis) in Thailand. Infect Genet Evol. 2016;40:310–4.View ArticleGoogle Scholar
  39. Geurden T, Levecke B, Caccio SM, Visser A, De Groote G, Casaert S, et al. Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology. 2009;136:1161–8.View ArticleGoogle Scholar
  40. Mahdy AK, Surin J, Mohd-Adnan A, Wan KL, Lim YA. Molecular characterization of Giardia duodenalis isolated from Semai Pahang Orang Asli (Peninsular Malaysia aborigines). Parasitology. 2009;136:1237–41.View ArticleGoogle Scholar
  41. Caccio SM, Beck R, Lalle M, Marinculic A, Pozio E. Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol. 2008;38:1523–31.View ArticleGoogle Scholar
  42. Huey CS, Mahdy MA, Al-Mekhlafi HM, Nasr NA, Lim YA, Mahmud R, et al. Multilocus genotyping of Giardia duodenalis in Malaysia. Infect Genet Evol. 2013;17:269–76.View ArticleGoogle Scholar
  43. Wegayehu T, Karim MR, Erko B, Zhang L, Tilahun G. Multilocus genotyping of Giardia duodenalis isolates from calves in Oromia Special Zone, Central Ethiopia. Infect Genet Evol. 2016;43:281–8.View ArticleGoogle Scholar
  44. Zhong Z, Tian Y, Li W, Huang X, Deng L, Cao S, et al. Multilocus genotyping of Giardia duodenalis in captive non-human primates in Sichuan and Guizhou provinces, Southwestern China. PLoS ONE. 2017;12:e0184913.View ArticleGoogle Scholar
  45. Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol. 2017;8–9:14–32.View ArticleGoogle Scholar
  46. Jiang J, Alderisio KA, Singh A, Xiao L. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol. 2005;71:1135–41.View ArticleGoogle Scholar
  47. Sulaiman IM, Fayer R, Lal AA, Trout JM, Schaefer FW 3rd, Xiao L. Molecular characterization of microsporidia indicates that wild mammals Harbor host-adapted Enterocytozoon spp. as well as human-pathogenic Enterocytozoon bieneusi. Appl Environ Microbiol. 2003;69:4495–501.View ArticleGoogle Scholar
  48. Caccio SM, Ryan U. Molecular epidemiology of giardiasis. Mol Biochem Parasitol. 2008;160:75–80.View ArticleGoogle Scholar
  49. Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, Schantz PM, et al. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis. 2003;9:1444–52.View ArticleGoogle Scholar
  50. Ye J, Xiao L, Li J, Huang W, Amer SE, Guo Y, et al. Occurrence of human-pathogenic Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium genotypes in laboratory macaques in Guangxi, China. Parasitol Int. 2014;63:132–7.View ArticleGoogle Scholar
  51. Lebbad M, Petersson I, Karlsson L, Botero-Kleiven S, Andersson JO, Svenungsson B, et al. Multilocus genotyping of human Giardia isolates suggests limited zoonotic transmission and association between assemblage B and flatulence in children. PLoS Negl Trop Dis. 2011;5:e1262.View ArticleGoogle Scholar
  52. Li W, Kiulia NM, Mwenda JM, Nyachieo A, Taylor MB, Zhang X, et al. Cyclospora papionis, Cryptosporidium hominis, and human-pathogenic Enterocytozoon bieneusi in captive baboons in Kenya. J Clin Microbiol. 2011;49:4326–9.View ArticleGoogle Scholar
  53. Mynarova A, Foitova I, Kvac M, Kvetonova D, Rost M, Morrogh-Bernard H, et al. Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in wild, semi-wild and captive orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia. PLoS ONE. 2016;11:e0152771.View ArticleGoogle Scholar
  54. Sak B, Petrzelkova KJ, Kvetonova D, Mynarova A, Shutt KA, Pomajbikova K, et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS ONE. 2013;8:e71840.View ArticleGoogle Scholar
  55. Sak B, Petrzelkova KJ, Kvetonova D, Mynarova A, Pomajbikova K, Modry D, et al. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda. PLoS ONE. 2014;9:e109751.View ArticleGoogle Scholar
  56. Yang H, Lin Y, Li Y, Song M, Lu Y, Li W. Molecular characterization of Enterocytozoon bieneusi isolates in laboratory macaques in north China: zoonotic concerns. Parasitol Res. 2017;116:2877–82.View ArticleGoogle Scholar
  57. Ye J, Xiao L, Ma J, Guo M, Liu L, Feng Y. Anthroponotic enteric parasites in monkeys in public park, China. Emerg Infect Dis. 2012;18:1640–3.View ArticleGoogle Scholar
  58. Yu F, Wu Y, Li T, Cao J, Wang J, Hu S, et al. High prevalence of Enterocytozoon bieneusi zoonotic genotype D in captive golden snub-nosed monkey (Rhinopithecus roxellanae) in zoos in China. BMC Vet Res. 2017;13:158.View ArticleGoogle Scholar
  59. Zhong Z, Li W, Deng L, Song Y, Wu K, Tian Y, et al. Multilocus genotyping of Enterocytozoon bieneusi derived from nonhuman primates in southwest China. PLoS ONE. 2017;12:e0176926.View ArticleGoogle Scholar
  60. Liu H, Jiang Z, Yuan Z, Yin J, Wang Z, Yu B, et al. Infection by and genotype characteristics of Enterocytozoon bieneusi in HIV/AIDS patients from Guangxi Zhuang autonomous region. China. BMC Infect Dis. 2017;17:684.View ArticleGoogle Scholar
  61. Lores B, Lopez-Miragaya I, Arias C, Fenoy S, Torres J, del Aguila C. Intestinal microsporidiosis due to Enterocytozoon bieneusi in elderly human immunodeficiency virus-negative patients from Vigo, Spain. Clin Infect Dis. 2002;34:918–21.View ArticleGoogle Scholar
  62. Garcia RJ, French N, Pita A, Velathanthiri N, Shrestha R, Hayman D. Local and global genetic diversity of protozoan parasites: spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis. 2017;11:e0005736.View ArticleGoogle Scholar
  63. Beck R, Sprong H, Bata I, Lucinger S, Pozio E, Caccio SM. Prevalence and molecular typing of Giardia spp. in captive mammals at the zoo of Zagreb, Croatia. Vet Parasitol. 2011;175:40–6.View ArticleGoogle Scholar
  64. Berrilli F, Prisco C, Friedrich KG, Di Cerbo P, Di Cave D, De Liberato C. Giardia duodenalis assemblages and Entamoeba species infecting non-human primates in an Italian zoological garden: zoonotic potential and management traits. Parasit Vectors. 2011;4:199.View ArticleGoogle Scholar
  65. Karim MR, Zhang S, Jian F, Li J, Zhou C, Zhang L, et al. Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. Int J Parasitol. 2014;44:1039–47.View ArticleGoogle Scholar
  66. Debenham JJ, Atencia R, Midtgaard F, Robertson LJ. Occurrence of Giardia and Cryptosporidium in captive chimpanzees (Pan troglodytes), mandrills (Mandrillus sphinx) and wild Zanzibar red colobus monkeys (Procolobus kirkii). J Med Primatol. 2015;44:60–5.View ArticleGoogle Scholar
  67. Lebbad M, Mattsson JG, Christensson B, Ljungstrom B, Backhans A, Andersson JO, et al. From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol. 2010;168:231–9.View ArticleGoogle Scholar
  68. Wang R, Zhang X, Zhu H, Zhang L, Feng Y, Jian F, et al. Genetic characterizations of Cryptosporidium spp. and Giardia duodenalis in humans in Henan, China. Exp Parasitol. 2011;127:42–5.View ArticleGoogle Scholar
  69. Prystajecky N, Tsui CK, Hsiao WW, Uyaguari-Diaz MI, Ho J, Tang P, et al. Giardia spp. are commonly found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization. Appl Environ Microbiol. 2015;81:4827–34.View ArticleGoogle Scholar

Copyright

© The Author(s) 2019

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Please note that comments may be removed without notice if they are flagged by another user or do not comply with our community guidelines.

Advertisement