Skip to main content

Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis

Abstract

Background

Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease.

Methods

The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis.

Result

The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%).

Conclusion

The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.

Graphical Abstract

Introduction

Trypanosomes are protozoan parasites belonging to the family of Trypanosomatidae and the genus Trypanosoma (T.). The genus Trypanosoma comprises many species such as T. brucei, T. congolense, T. equiperdum, T. evansi, T. simiae, T. suis and T. vivax, which cause diseases called trypanosomoses in different mammalian hosts including humans [1]. Trypanosomoses are widely distributed in Africa, Latin America and Asia [2, 3].

Trypanosoma vivax is one of the most important Trypanosoma species known to infect both domestic and wild animals [4, 5]. Trypanosoma vivax is reported from cattle, dromedary camel, [6], goat, sheep, pig, dog [7], horse, donkey [8], both domesticated and wild buffalo, warthog, hippopotamus, reedbuck, waterbuck [9], antelope [10], giraffe [11], rhinoceros [12], rodents, pangolins, primates, reptiles and different wild ungulates and carnivores [13]. In Sub-Saharan Africa, T. vivax is mainly transmitted by tsetse flies (Diptera: Glossinidae) in which the parasite can multiply and remain infective throughout the insect’s life [14]. The parasite has the ability to be transmitted mechanically by hematophagous flies such as Tabanus spp., Stomoxys calcitrans and Haematobia irritans, which are responsible for the spread of T. vivax in tsetse-free areas of Africa and in Latin America [4, 15,16,17,18]

Trypanosoma vivax infection can be suspected by clinical and/or serological evidence and can be confirmed by parasitological or molecular methods [19]. Trypanosoma vivax prevalence shows considerable variation with geography, abundance of tsetse or blood-sucking flies, and host species. In tsetse-infested areas of tropical Africa, the T. vivax prevalence is typically reported between 5–15% and often accounts for up to half of the total trypanosome prevalence. Outside of the tsetse belt, T. vivax prevalence is lower, between 2–10%, and it is related to local and seasonal variation in biting fly abundance [20].

Trypanosomosis caused by T. vivax is an important cause of economic losses related to morbidity, mortality, reproductive issues and decreased production [4]. For example, economic losses associated with bovine trypanosomosis have been estimated to be around US$5 billion a year in Africa, and the continent spends at least $30 million every year to control bovine trypanosomosis in terms of curative and prophylactic treatments [21]. Estimates outside Africa indicate that > 11 million head of cattle with a value of > US$ 3 billion are at risk from T. vivax infection in the Brazilian Pantanal and Bolivian lowlands, with potential losses in excess of US$ 160 million [16].

Many studies have been conducted on T. vivax over the past 100 years. Studies before the 1950s focused more on the morphology and taxonomy [22, 23], pathogenicity [24] and treatment [25, 26]. However, since the 1950s, a considerable number of epidemiological studies have been conducted. Notwithstanding the excellent review on livestock trypanosomoses and their vectors in Latin America [18] and a recent general review on T. vivax [20], a systematic literature review on the global distribution, prevalence and host range of T. vivax is lacking. Moreover, no information on the global distribution of T. vivax is available at the World Animal Health Information System of the World Health Organization (https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasedistributionmap).

Thus, this study was conducted to provide the global distribution of T. vivax and to estimate the pooled prevalence of trypanosomosis caused by T. vivax in naturally infected domestic and wild animals.

Methods

The systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist [27]. Screening and data extraction were performed by two authors (SL and EF) independently. All disagreements were discussed and resolved by consensus. A third author (PB) was also involved in the search for full-text papers to ensure that all relevant publications were included.

Literature search

On 30 August 2019, a systematic literature search was conducted on three databases to identify all publications reporting natural infection of T. vivax across the world. PubMed, Scopus and CAB Direct were screened using the search term Trypanosoma vivax without time and language restrictions. All references found were imported into Mendeley Desktop reference manager software.

Inclusion and exclusion criteria

To be considered, articles were required to meet the following inclusion criteria: (i) should be observational studies such as cross sectional, longitudinal, case report or outbreak investigation, published in indexed journals, reporting any natural infection of T. vivax using any diagnostic test or tests available; (ii) the study design, sample size, sample type, diagnostic methods and number of T. vivax-infected animals or prevalence, including 0%; (iii) species of animals with T. vivax infections must be provided. Experimental studies; publications which fail to describe diagnostic tools, study design and/or sample sources; and reports solely based on clinical signs were removed despite reporting the prevalence of the disease. In addition, studies reporting T. vivax from multiple species without stratifying the report at species level were removed.

Data extraction

All relevant information such as author names, year of publication, study period, country, region, province, district, latitude, longitude (if provided or if they can be retrieved), host species, number of samples analyzed, type of samples collected, diagnostic method used, number of positives and prevalence or percentage were extracted to a pre-prepared Microsoft Excel spreadsheet (Microsoft Corp., Redmond, WA, USA). When publications only reported the number of animals tested and the prevalence, the numbers of positives were calculated. When publications only reported the number of animals tested and the number of positives, prevalence values were calculated. Publications in other languages than English were translated using Google Translate.

Data analysis

Owing to heterogeneity within and between studies, random-effects meta-analysis was used to estimate the pooled prevalence and its 95% confidence interval (CI) in different hosts [28]. The estimation was carried out after categorization of the results according to the diagnostic tests used and the host species tested. Accordingly, diagnostic tests were categorized into three categories: (i) parasitological methods, including wet blood smear, stained blood smear and microhematocrit concentration; (ii) serological methods, including enzyme-linked immunosorbent assay (ELISA) both antigen and antibody based, indirect fluorescence antibody test (IFAT) and antigen detection LATEX agglutination; (iii) molecular methods, including reverse line blot hybridization assay, real-time and conventional polymerase chain reaction (PCR). Species-wise, sheep and goat were categorized into “small ruminants,” horse, donkey and mule into “equine” and all studied wild animals including Cape buffalo into “wild animals.” For cattle, domestic buffalo, dromedary camel, pig and dog, pooled prevalence was estimated without categorization.

Heterogeneity between studies was evaluated through the Cochran’s Q test (reported as p value), and the inverse variance index (I2). I2 describes the percentage of observed total variation between studies due to heterogeneity rather than to random error (intra-study variation). I2 values < 25% correspond with low heterogeneity, up to 50% with moderate and up to 75% with high heterogeneity [29]. Sub-group analysis using the variable test method was performed to determine the potential sources of heterogeneity among studies. The across-study bias was examined by a funnel plot and Egger’s regression asymmetry test. A funnel plot was used to visually examine the presence of publication bias, and Egger’s regression asymmetry test was used to test whether the bias was statistically significant or not [30]. The unbiased estimates were calculated using the Duval and Tweedie non-parametric ‘fill and trim’ linear random method [31].

The meta-analysis was done using ‘meta’ package of R statistical software version 3.6.2 (R Foundation for Statistical Computing). The map representing the global distribution of T. vivax was created, using Quantum GIS software version 3.4.5 (Open Source Geospatial Foundation, Boston, MA, USA).

Results

Literature search selection and data extraction

A total of 1691 publications were retrieved, 348 from PubMed, 1269 from Scopus and 74 from CAB Direct (Fig. 1). After removal of 390 duplicates, the remaining 1301 articles were screened based on their titles and abstracts. Reviews and articles reporting on laboratory and field experiments (n = 993) were excluded of further analysis. Articles without an abstract or without sufficient information to make a decision were left for full text review. Of the remaining 308 articles, 11 of the full text files remained inaccessible [32,33,34,35,36,37,38,39,40,41,42]. Finally, one additional article, missed by the systematic literature search, was included manually. Full-text papers of 298 articles were retrieved online or via the library of the Institute of Tropical Medicine Antwerp and eligibility assessed according to the pre-established inclusion/exclusion criteria. Further 53 articles were excluded leaving 245 articles fulfilling all inclusion criteria for the qualitative analysis [4,5,6,7,8,9,10, 12,13,14, 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277]. Among these 245 articles published between 1958 and 2019, 10 are case reports, 186 report on a cross-sectional study, 35 on a longitudinal study and 14 on an outbreak investigation. All relevant data from these articles were recorded, according to diagnostic method and host species, in a Microsoft Excel file, thus containing 899 records used in the meta-analysis (Additional file 1).

Fig. 1
figure 1

Flow chart representing the selection of studies for inclusion in the systematic review and meta-analysis of global distribution, host range and prevalence of Trypanosoma vivax

Of these 245 articles, 187 are conducted in 27 African countries, with Ethiopia taking the lead with 43 articles, followed by Nigeria with 29, Uganda with 21 and Kenya with 15 articles. In Latin America, 57 studies were conducted of which 32 were from Brazil, 9 from Venezuela and 6 from Colombia.

Geographic distribution

All the studies conducted in the 27 African countries reported the presence of T. vivax in at least one host species; natural T. vivax infections were found in 12 of the 13 studied Latin American countries (Fig. 2 and Table 1). In Martinique, Alonso and co-workers did not find clinical or serological evidence of T. vivax in cattle on this island [50]. One article mentions a cross-sectional study on 300 equines in Pakistan, but all animals were negative in molecular tests for T. vivax [231]. We could not find any other reports on the presence of T. vivax in Asia, Antarctica, Australia, Europe and North America.

Fig. 2
figure 2

The global distribution of T. vivax based on this systematic review including publications between 1958 and 2019

Table 1 Countries with reported T. vivax infection in diverse host species tested with diverse methods

Host range

A total of 232,627 tests were performed, and 24,420 of them were positive for natural infection of T. vivax. Trypanosoma vivax was reported from nine domestic animal species: cattle, domestic buffalo, dog, donkey, dromedary camel, goat, horse, pig and sheep. Among them, cattle were the most studied species with 198,593 tests performed on cattle in 36 countries and two territories (192 publications) and 20,964 were positive for T. vivax. Next to cattle, goat, sheep, pig and donkey were the most frequently studied species. The protozoal parasite was also reported from wild animals including diverse species of antelopes, Cape buffalo, hippopotamus, black rhinoceros, pangolin and warthog. Trypanosoma vivax was reported from 39 wild fauna species, including many antelope species and Cape buffalo (Tables 2, 3).

Table 2 Domestic animal species tested for infection with T. vivax
Table 3 Wild animal species tested positive for T. vivax infection

Pooled prevalence estimates according to host species and type of diagnostic test

Pooled prevalence estimates by test methods for different hosts are presented in Table 4, and forest plots of the meta-analysis and the subgroup analyses can be found in Additional files 2 and 3. Substantial heterogeneity was observed in the pooled estimate except for dog, which remained significant (P < 0.05) even after sub-group analysis.

Table 4 Sub-group meta-analysis for different species using different diagnostic methods

A total of 145 cross-sectional studies from 32 countries were included in estimation of natural infection of T. vivax in cattle. The random effect model indicates the pooled prevalence to be 6.4% (5.7–7.2, 95% CI). For small ruminants, pooled prevalence of T. vivax was estimated from 33 studies in 16 countries and found to be 3.8% (2.5–5.6, 95% CI). A total of 15 studies from 10 different countries were used to estimate the pooled prevalence of T. vivax in equines. The random effect model estimates the pooled prevalence to be 3.7% (2.0–6.8, 95% CI). Pooled prevalence of T. vivax in camels was estimated from four studies in three different countries. The model estimates a pooled prevalence of 8.4% (3.4–19.3, 95% CI). A total of 12 studies from 8 different countries were included in the estimation of pooled prevalence in pigs, which was found to be 5.5% (3.0–10.1, 95% CI). Five studies from five countries were used in the estimation pooled prevalence of T. vivax in dogs. The pooled prevalence was estimated to be 2.6% (1.0–6.3% 95% CI). Three studies reported natural infection of T. vivax in domestic buffaloes from Venezuela, and the random effect model estimates a pooled prevalence of 30.6% (14.2–54.1, 95% CI). For wild animals, a pooled prevalence of 12.9% (9.9–16.6, 95% CI) was estimated from six studies in five countries. Subgroup pooled prevalences estimated according to the type of diagnostic test, as represented in Table 4, were lowest with parasitological techniques (from 1.1% in pigs to 13.2% in wild animals) and highest with serological techniques (from 13.8% in small ruminants to 57.6% in domestic buffalo).

Publication bias

The presence of publication bias was analyzed only in five species since there were not enough publications to discuss its possible influence in camel, domestic buffalo and dogs. Possible publication bias was demonstrated by visualization of asymmetry in funnel plots for cattle (Fig. 3a), small ruminants (Fig. 3b), equines (Fig. 3c), pigs (Fig. 3d) and wild animals (Fig. 3e). It was further confirmed by ‘metabias’ test (Egger’s test) with p-value < 0.05. The 'trimfill' method imputed 170, 43, 30, 27 and 11 studies to obtain symmetry in funnel plots in cattle, wild animals, equines, small ruminants and pigs, respectively. The new estimated prevalence equals to 14.8% for cattle, 26.8% for wild animals, 21.6% for equines, 9.5% for small ruminants and 24.5% for pigs.

Fig. 3
figure 3

Publication bias evidenced by funnel plots for cattle (a), small ruminants (b), equines (c), pigs (d) and wild animals (e)

Discussion

This study presents the first systematic review of published literature since the 1950s describing global distribution, host range and prevalence of trypanosomosis caused by T. vivax. Not surprisingly, most publications report on T. vivax infections in domestic mammalian species, in particular in cattle and small ruminants, while few publications describe natural infections in wildlife.

Looking at the T. vivax distribution map (Fig. 2), there is an evident data gap for some sub-Saharan African countries where tsetse flies are present and therefore T. vivax may be endemic. Although our formal search strategy could not retrieve any publication on these "missing" countries, conventional Google search confirms the presence of T. vivax in South Sudan and Zimbabwe [284, 285], and Genevieve et al. [286] reported on the presence of potential vectors in the Central African Republic. Since Angola, the Central African Republic and the Republic of Congo are endemic for human African trypanosomosis, the presence of T. vivax in these countries is likely [287]. Due to its adaptation to mechanical transmission, T. vivax is also present outside the tsetse belt in Africa, e.g. in Ethiopia and Sudan [114, 288]. As a consequence, the trypanosomosis control efforts with focus on tsetse eradication might have little effect on T. vivax. Also, economic impact assessments that are solely based on tsetse distribution alone could seriously underestimate the problem of trypanosomosis because of T. vivax.

Out of Africa, T. vivax is present in Latin America but not in North America, Australia, Asia and the Pacific regions. Trypanosoma vivax is believed to be introduced into Latin America in cattle and horses imported from Africa, possibly in the sixteenth century, and spread to different Latin American countries including Brazil, Colombia, French Guiana, Guadeloupe, Guyana, Martinique, Panama, Suriname and Venezuela [18]. Stephen [289] reviewed the presence of the parasite in Costa Rica, Ecuador, El Salvador, Paraguay and Peru, and according to Gardiner et al. [15], T. vivax was present in the Caribbean thus posing a threat to the livestock industries. From our literature search, we can only confirm T. vivax to be endemic in 12 Latin American countries of which 7 (Argentina, Bolivia, Brazil, Colombia, Guyana, Peru, Venezuela) are also endemic for T. evansi [290]. Although, our literature search provides information on the potential spread of T. vivax in Latin America, it is important to note that the distribution could be much wider, for example, T. vivax was only detected in Argentina in 2018; this is this due to the lack of previous studies. Apparently, T. vivax has never spread into Asia, unlike T. evansi, although similar to the latter; it can be mechanically transmitted by bloodsucking flies. Unless there is a particular biological or environmental factor preventing T. vivax from invading the Middle East and Asia, as well Northern Africa, North America and Europe, we must remain alert about the risk of importing T. vivax into non-endemic countries as happened in Latin America.

This review suggests that T. vivax has a very diverse host range, including 9 domestic mammals and almost 40 wild fauna species. Regarding the latter, however, data should be interpreted with caution. Diagnostic tests, whether parasitological, serological or even molecular, have their limitations. For examples, by sequencing of PCR amplicons, Auty and co-workers [11] clearly demonstrate that wildlife may harbor a diversity of trypanosomes, including taxonomically undefined species. Therefore, it is likely that many reports on T. vivax infection in wildlife and tsetse in fact deal with other trypanosome species that are not necessarily pathogenic for domestic animals.

The pooled prevalence of trypanosomosis in different hosts varies significantly depending on the detection methods; significantly higher estimates were reported in publications using serological techniques. Higher estimates using a serological technique could be due to the persistence of the antibody over several months after curative treatment and the possibility of low undetectable parasitemia in parasitological techniques [20, 93, 291, 292]. Moti et al. [187] compared the percentage positivity obtained with different diagnostic techniques and showed that relative to the microhematocrit centrifugation technique the percent positivity increased by 50 and 250% when using PCR-RFLP. Also, Garcia et al. [118] reported that for the detection of trypanosomes, PCR-based assays are twice as sensitive as parasitological techniques such as the microhaematocrit centrifugation.

The study has the following limitations. The literature search was almost exclusively based on electronic databases whereby some older literature must have been missed. The data showed a large degree of heterogeneity among studies, which remain significant after sub-group analysis. There is a significant publication bias, which could be due to incomplete or inaccurate information provided in the publications. In addition, studies were conducted between 1956 and 2017, and the result may not accurately reflect the current epidemiological situation and therefore could limit interpretation of the result to some degree. Furthermore, we suspect numerous data gaps mainly because of two reasons. First, due to the lack of a country-level monitoring and reporting system for trypanosomosis, most of the data included in this analysis are from research activities. Second, trypanosomosis diagnosis in most endemic countries relied to a great extent on low-sensitivity parasitological methods, while more sensitive molecular tools are rarely used. In addition, the majority of studies analyzing trypanosome's presence in the field may not have a sampling strategy that allows a robust estimation of prevalence. This is for multiple and understandable reasons—samples can be difficult and expensive to collect, and many studies rely on purposive sampling, or sampling of, for example, animals presented to veterinary clinics. While these kinds of studies provide a rough idea of pathogen presence/absence, they may not provide an accurate estimate of prevalence. Thus, caution should be taken when interpreting the results presented here.

Conclusion

With this study, we intended to provide comprehensive information on the geographical distribution, host range and prevalence of trypanosomosis caused by T. vivax worldwide. The results confirm the wide geographical distribution and a diverse host range of T. vivax. The parasite parasitizes almost all domestic mammals and many wild animal species, thus suggesting the potential to get established in other countries with favorable environmental conditions, e.g. in the Middle East, Asia and Australia. The meta-analysis showed a high degree of variability in estimated prevalence values. The variability can be attributed to diagnostic tests used and the species of the animal infected.

Availability of data and materials

All data analyzed in this paper are provided as supplementary file.

References

  1. Stevens J., Brisse S. Systematics of trypanosomes of medical and veterinary importance. In: Maudlin I, Holmes P., Miles M., editors. Trypanos. CABI Publishing; 2004. p. 1–19.

  2. Luckins AG, Dwinger RH. Non-tsetse-transmitted animal trypanosomiasis. In: Maudlin I, Holmes PH, Miles MA, editors. Trypanos. CABI Publishing; 2004. p. 269–79.

  3. Cecchi G, Paone M, Feldmann U, Vreysen MJB, Diall O, Mattioli RC. Assembling a geospatial database of tsetse-transmitted animal trypanosomosis for Africa. Parasit Vectors. 2014;7:1–10.

    Article  Google Scholar 

  4. Vieira OLE, de Macedo LO, Santos MAB, Silva JABA, de Mendonca CL, da Faustino MAG, et al. Detection and molecular characterization of Trypanosoma (Duttonella) vivax in dairy cattle in the state of Sergipe, northeastern Brazil. Rev Bras Parasitol Vet Brazil. 2017;26:516–20.

    Article  Google Scholar 

  5. Kassian EN, Simuunza MC, Silayo RS, Moonga L, Ndebe J, Sugimoto C, et al. Prevalence and risk factors of bovine trypanosomosis in Kilwa district, Lindi region of southern Tanzania. Vet Parasitol Reg Stud Reports. 2017;9:1–5.

    CAS  PubMed  Google Scholar 

  6. Birhanu H, Fikru R, Said M, Kidane W, Gebrehiwot T, Hagos A, et al. Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, Northern Ethiopia. Parasit Vectors. 2015;8:212.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nimpaye H, Njiokou F, Njine T, Njitchouang GR, Cuny G, Herder S, et al. Trypanosoma vivax, T. congolense “forest type” and T. simiae: prevalence in domestic animals of sleeping sickness foci of Cameroon. Parasite. 2011;18:171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinchbeck GL, Morrison LJ, Tait A, Langford J, Meehan L, Jallow S, et al. Trypanosomosis in the gambia: prevalence in working horses and donkeys detected by whole genome amplification and PCR, and evidence for interactions between trypanosome species. BMC Vet Res. 2008;4:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Anderson NE, Mubanga J, Fevre EM, Picozzi K, Eisler MC, Thomas R, et al. Characterisation of the wildlife reservoir community for human and animal trypanosomiasis in the Luangwa Valley, Zambia. PLoS Negl Trop Dis. 2011;5:e1211.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guedegbe B, Verhulst A, Van Meirvenne N, Pandey VS, Doko A. Serological evidence of the existence of a wild reservoir of Trypanosoma brucei gambiense in the Pendjari biosphere reservation in the Republic of Benin. Ann Soc Belg Med Trop. 1992;72:113–20.

    CAS  PubMed  Google Scholar 

  11. Auty H, Anderson NE, Picozzi K, Lembo T, Mubanga J, Hoare R, et al. Trypanosome diversity in wildlife species from the Serengeti and Luangwa Valley Ecosystems. PLoS Negl Trop Dis. 2012;6:e1828.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mihok S, Otieno LH, Tarimo CS. Trypanosome infection rates in tsetse flies (Diptera: Glossinidae) and cattle during tsetse control operations in the Kagera River region of Rwanda. Bull Entomol Res. 1992;82:361–7.

    Article  Google Scholar 

  13. Njiokou F, Simo G, Nkinin SW, Laveisseìre C, Herder S. Infection rate of Trypanosoma brucei s.l., T. vivax, T. congolense “forest type”, and T simiae in small wild vertebrates in south Cameroon. Acta Trop. 2004;92:139–46.

    Article  CAS  PubMed  Google Scholar 

  14. Suh PF, Njiokou F, Mamoudou A, Ahmadou TM, Mouhaman A, Garabed R. Bovine trypanosomiasis in tsetse-free pastoral zone of the far-North region, Cameroon. J Vector Borne Dis. 2017;54:263–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gardiner PR, Pearson TW, Clarke MW, Mutharia LM. Identification and isolation of a variant surface glycoprotein from Trypanosoma vivax. Science. 1987;235:774–7.

    Article  CAS  PubMed  Google Scholar 

  16. Jones TW, Dávila AMR. Trypanosoma vivax-Out of Africa. Trends Parasitol. 2001;17:99–101.

    Article  CAS  PubMed  Google Scholar 

  17. Davila AM, Silva RA. Animal trypanosomiasis in South America: Current status, partnership, and information technology. Ann N Y Acad Sci. 2000;916:199–212.

    Article  CAS  PubMed  Google Scholar 

  18. Desquesnes M. Livestock trypanosomoses and their vectors in Latin America CIRAD-EMVT publication. Paris: OIE; 2004.

    Google Scholar 

  19. Osório ALAR, Madruga CR, Desquesnes M, Soares CO, Ribeiro LRR, Da Costa SCG, et al. Trypanosoma (Duttonella) vivax: Its biology, epidemiology, pathogenesis, and introduction in the New World-a review. Mem Inst Oswaldo Cruz. 2008;103:1–13.

    Article  PubMed  Google Scholar 

  20. Dagnachew S, Bezie M. Review on Trypanosoma vivax. African J Basic Appl Sci. 2015;7:41–64.

    Google Scholar 

  21. Angara TE, Ismail A, Ibrahim A. An overview on the economic impacts of animal trypanosomiasis. Glob J Res Anal. 2012;3:275–6.

    Article  Google Scholar 

  22. Hoare CA, Broom JC. Morphological and taxonomic studies on mammalian trypanosomes. Trans R Soc Trop Med Hyg. 1938;31:517–34.

    Article  Google Scholar 

  23. Hoare CA, Broom JC. Morphological and taxonomic studies on mammalian trypanosomes. vii.—differentiation of Trypanosoma uniforme and T. vivax in mixed infections. Trans R Soc Trop Med Hyg. 1939;32:629–32.

    Article  Google Scholar 

  24. Hornby HE. The pathogenicity to cattle of Trypanosoma vivax. Vet Rec. 1946;58:178.

    CAS  PubMed  Google Scholar 

  25. Schwetz J. Treatment of Trypanosoma vivax infection. Trans R Soc Trop Med Hyg. 1929;23:109.

    Article  Google Scholar 

  26. Fiennes RNTW. The treatment experiments with Trypanosoma vivax (Ziemann) disease of cattle. Vet Rec. 1948;60:302.

    CAS  PubMed  Google Scholar 

  27. Moher D, Liberati A, Tetzlaff J, Altman D, Group TP. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097.

    Article  Google Scholar 

  28. Hedges L, Vevea J. Fixed- and random-effects models in meta-analysis. Psychol Methods. 1998;3:486–504.

    Article  Google Scholar 

  29. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  32. Baptista LCF, de Fernandes ACC, da Silva TIB, de Souza ACM, Sandes HMM, Alves LC, et al. Trypanosoma vivax infection in dairy cattle raised in the State of Pernambuco: case report. Veterinária e Zootec. 2011;18:919–22.

    Google Scholar 

  33. Bolívar AM, Rojas A, Rosales D, Torres Y, García-Lugo P. Detection of hemotropic agents in a livestock farm using PCR and DGGE. Rev Salud Anim. 2014;36:53–7.

    Google Scholar 

  34. Carvalho AU, Abrão DC, Facury Filho EJ, Paes PRO, Ribeiro MFB. Occurrence of Trypanosoma vivax in Minas Gerais state, Brazil. Arq Bras Med Vet e Zootec. 2008;60:769–71.

    Article  Google Scholar 

  35. Fidelis Junio OL, Cadioli FA, de Barnabé PA, Machado RZ, Teixeira MMG, Marques LC. Trypanosomiasis in dairy cattle in São Paulo state. Veterinária e Zootec. 2011;18:879–82.

    Google Scholar 

  36. Gonzales JL, Jones TW, Picozzi K, Cuellar HR. Evaluation of a polymerase chain reaction assay for the diagnosis of bovine trypanosomiasis and epidemiological surveillance in Bolivia. Kinetoplastid Biol Dis. 2003;2:1–4.

    Article  Google Scholar 

  37. Kalu AU, Uzoukwu M, Ikeme M. Prevalence of tsetse fly and ruminant trypanosomosis in Katsina-Ala Local Government Area, Nigeria. Roum Arch Microbiol Immunol. 1996;55:341–52.

    CAS  PubMed  Google Scholar 

  38. Kamani J, Sannusi A, Egwu OK, Dogo GI, Tanko TJ, Kemza S, et al. Prevalence and significance of haemoparasitic infections of cattle in North-Central, Nigeria. Vet World. 2010;3:445–8.

    Article  Google Scholar 

  39. Katunguka-Rwakishaya E. The prevalence of trypanosomosis in small ruminants and pigs in a sleeping sickness endemic area of Buikwe County, Mukono district, Uganda. Rev Elev Med Vet Pays Trop. 1996;49:56–8.

    CAS  PubMed  Google Scholar 

  40. Magona JW, Mayende JSP. Occurrence of concurrent trypanosomosis, theileriosis, anaplasmosis and helminthosis in Friesian, Zebu and Sahiwal cattle in Uganda. Onderstepoort J Vet Res. 2002;69:133–40.

    CAS  PubMed  Google Scholar 

  41. Plagemann O. Epidemiological survey of trypanosomiasis in cattle in Northern Uganda. Berl Munch Tierarztl Wochenschr. 1974;87:352–5.

    CAS  PubMed  Google Scholar 

  42. Suárez C, García F, Román D, Coronado A, Perrone T, Reyna A, et al. Factores de riesgo asociados a la tripanosomosis bovinaen explotaciones ganaderas de Venezuela. Zootec Trop. 2010;27:363–72.

    Google Scholar 

  43. Abebe R, Wolde A. A cross-sectional study of trypanosomosis and its vectors in donkeys and mules in Northwest Ethiopia. Parasitol Res. 2010;106:911–6.

    Article  PubMed  Google Scholar 

  44. Abebe R, Gute S, Simon I. Bovine trypanosomosis and vector density in Omo-Ghibe tsetse belt, South Ethiopia. Acta Trop. 2017;167:79–85.

    Article  PubMed  Google Scholar 

  45. Acapovi-Yao G, Cisse B, Koumba CRZ, Mavoungou JF. Trypanosome infections in cattle in farms of different departments in Côte d’Ivoire. Rev Med Vet. 2016;167:289–95.

    Google Scholar 

  46. Adam Y, Marcotty T, Cecchi G, Mahama CI, Solano P, Bengaly Z, et al. Bovine trypanosomosis in the Upper West Region of Ghana: Entomological, parasitological and serological cross-sectional surveys. Res Vet Sci. 2012;92:462–8.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed HA, Picozzi K, Welburn SC, MacLeod ET. A comparative evaluation of PCR- based methods for species- specific determination of African animal trypanosomes in Ugandan cattle. Parasit Vectors. 2013;6:316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ali D, Bitew M. Epidemiological study of bovine trypanosmosis in Mao-Komo special district, Benishangul Gumuz regional state, Western Ethiopia. Glob Vet. 2011;6:402–8.

    Google Scholar 

  49. Alingu RA, Muhanguzi D, MacLeod E, Waiswa C, Fyfe J. Bovine trypanosome species prevalence and farmers’ trypanosomiasis control methods in south-western Uganda. J S Afr Vet Assoc. 2014;85:1–5.

    Article  Google Scholar 

  50. Alonso M, Camus E, Rodriguez Diego J, Bertaudière L, Tatareau JC, Liabeuf JM. Current status of bovine haemoparasitic diseases in Martinique (French West Indies). Rev Elev Med Vet Pays Trop. 1992;45:9–14.

    Article  CAS  PubMed  Google Scholar 

  51. Alves WP, Cuglovici DA, Furtado LFV, Da Silveira JAG, Facury-Filho EJ, Ribeiro MFB, et al. Comparison of three methods for diagnosis of Trypanosoma (Duttonella) vivax in cattle. Genet Mol Res. 2017;16:52.

    Google Scholar 

  52. Anene BM, Chime AB, Jibike GI, Anika SM. Prevalence of trypanosomiasis in Zebu cattle at Obudu ranch-a tsetse-free zone in Nigeria. Prev Vet Med. 1991;10:257–60.

    Article  Google Scholar 

  53. Anene BM, Chime AB, Jibike GI, Anika SM. Comparative study of clinical signs, haematology and prevalence of trypanosomiasis in Holstein Friesian and White Fulani Zebu cattle exposed to natural infection in a rain forest zone of Nigeria. Angew Parasitol. 1991;32:99–104.

    CAS  PubMed  Google Scholar 

  54. Angwech H, Nyeko JHPP, Opiyo EA, Okello-Onen J, Opiro R, Echodu R, et al. Heterogeneity in the prevalence and intensity of bovine trypanosomiasis in the districts of Amuru and Nwoya, Northern Uganda. BMC Vet Res. 2015;11:1–8.

    Article  CAS  Google Scholar 

  55. Applewhaite LM. Small ruminant trypanosomiasis in Guyana - a preliminary report. Br Vet J. 1990;146:93–4.

    Article  CAS  PubMed  Google Scholar 

  56. Ashcroft MT. An attempt to isolate Trypanosoma rhodesiense from wild animals. Trans R Soc Trop Med Hyg. 1958;52:276–82.

    Article  CAS  PubMed  Google Scholar 

  57. Balyeidhusa ASP, Kironde FAS, Enyaru JCK. Apparent lack of a domestic animal reservoir in Gambiense sleeping sickness in northwest Uganda. Vet Parasitol. 2012;187:157–67.

    Article  PubMed  Google Scholar 

  58. Bastos TSA, Faria AM, de Madrid DMCM, de Bessa LC, Linhares GFC, Fidelis OLJ, et al. First outbreak and subsequent cases of Trypanosoma vivax in the state of Goias, Brazil. Rev Bras Parasitol Vet. 2017;26:366–71.

    Article  PubMed  Google Scholar 

  59. Batista JS, Riet-Correa F, Teixeira MMG, Madruga CR, Simoes SDV, Maia TF. Trypanosomiasis by Trypanosoma vivax in cattle in the Brazilian semiarid: Description of an outbreak and lesions in the nervous system. Vet Parasitol. 2007;143:174–81.

    Article  CAS  PubMed  Google Scholar 

  60. Batista JS, Oliveira AF, Rodrigues CMF, Damasceno CAR, Oliveira IRS, Alves HM, et al. Infection by Trypanosoma vivax in goats and sheep in the Brazilian semiarid region: from acute disease outbreak to chronic cryptic infection. Vet Parasitol. 2009;165:131–5.

    Article  CAS  PubMed  Google Scholar 

  61. Batista JS, Rodrigues CMF, Olinda RG, Silva TMF, Vale RG, Camara ACL, et al. Highly debilitating natural Trypanosoma vivax infections in Brazilian calves: epidemiology, pathology, and probable transplacental transmission. Parasitol Res. 2012;110:73–80.

    Article  PubMed  Google Scholar 

  62. Batista JS, Freitas CIA, da Silva JB, Cavalcante TV, de Paiva KAR, Lopes FC, et al. Clinical evaluation and reproductive indices of dairy cows naturally infected with Trypanosoma vivax. Semin Ciências Agrárias. 2017;38:3031–8.

    Article  CAS  Google Scholar 

  63. Behnke JM, Chiejina SN, Musongong GA, Nnadi PA, Ngongeh LA, Abonyi FO, et al. Resistance and resilience of traditionally managed West African Dwarf goats from the savanna zone of northern Nigeria to naturally acquired trypanosome and gastrointestinal nematode infections. J Helminthol. 2011;85:80–91.

    Article  CAS  PubMed  Google Scholar 

  64. Bejano S, Kifle T, Bireda W. Study on the prevalence of bovine trypanosomosis in Assosa district of the Benishangul Gumuz region, West Ethiopia. Livest Res Rural Dev. 2016; 28.

  65. Bengaly Z, Kanwe AB, Duvallet G. Evaluation of an antigen detection-ELISA test for the diagnosis of trypanosomiasis in naturally infected cattle. Trop Med Parasitol. 1995;46:284–6.

    CAS  PubMed  Google Scholar 

  66. Bett B, Orenge C, Irungu P, Munga LK. Epidemiological factors that influence time-to-treatment of trypanosomosis in Orma Boran cattle raised at Galana Ranch, Kenya. Vet Parasitol. 2004;120:43–53.

    Article  CAS  PubMed  Google Scholar 

  67. Biryomumaisho S, Melville SE, Atunguka-Rwakishaya E, Lubega GW. Detection of natural Trypanosoma vivax infections in pigs with microhaematocrit centrifugation and amplification of ITS1 rDNA. Onderstepoort J Vet Res. 2009;76:285–9.

    Article  CAS  PubMed  Google Scholar 

  68. Biryomumaisho S, Rwakishaya E-K, Melville SE, Cailleau A, Lubega GW. Livestock trypanosomosis in Uganda: Parasite heterogeneity and anaemia status of naturally infected cattle, goats and pigs. Parasitol Res. 2013;112:1443–50.

    Article  PubMed  Google Scholar 

  69. Bishaw Y, Temesgen W, Yideg N, Alemu S. Prevalence of bovine trypanosomosis in Wemberma district of West Gojjam zone North West Ethiopia. Ethiop Vet J. 2012;16:41–8.

    Article  Google Scholar 

  70. Bitew M, Amedie Y, Abebe A, Tolosa T. Prevalence of bovine trypanosomosis in selected areas of Jabi Tehenan district, West Gojam of Amhara regional state, Northwestern Ethiopia. African J Agric Res. 2011;6:140–4.

    Google Scholar 

  71. Bittar JFF, Bassi PB, Moura DM, Garcia GC, Martins-Filho OA, Vasconcelos AB, et al. Evaluation of parameters related to libido and semen quality in Zebu bulls naturally infected with Trypanosoma vivax. BMC Vet Res. 2015;11:261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cadioli FA, de Barnabé PA, Machado RZ, Teixeira MCA, André MR, Sampaio PH, et al. First report of Trypanosoma vivax outbreak in dairy cattle in São Paulo state, Brazil. Rev Bras Parasitol Veterinária. 2012;21:118–24.

    Article  Google Scholar 

  73. Camejo MI, Aso PM, Gonzatti MI, Pérez-Rojas Y. Relationship between asymptomatic infections with Anaplasma marginale, Babesia spp. and Trypanosoma vivax in bulls and testosterone levels. Rev Cient la Fac Ciencias Vet la Univ del Zulia. 2016;26:13–9.

    Google Scholar 

  74. Chanie M, Arega C, Bogale B. Hematopathology and hematological parametric alterations in indigenous cattle due to trypanosomosis. Glob Vet. 2012;9:546–51.

    Google Scholar 

  75. Cherenet T, Sani RA, Panandam JM, Nadzr S, Speybroeck N, van den Bossche P. Seasonal prevalence of bovine trypanosomosis in a tsetse-infested zone and a tsetse-free zone of the Amhara Region, north-west Ethiopia. Onderstepoort J Vet Res. 2004;71:307–12.

    Article  CAS  PubMed  Google Scholar 

  76. Cherenet T, Sani RA, Speybroeck N, Panandam JM, Nadzr S, Van den Bossche P. A comparative longitudinal study of bovine trypanosomiasis in tsetse-free and tsetse-infested zones of the Amhara Region, northwest Ethiopia. Vet Parasitol. 2006;140:251–8.

    Article  CAS  PubMed  Google Scholar 

  77. Clausens PH, Wiemann A, Patzelt R, Kakaire D, Poetzsch C, Peregrine A, et al. Use of a PCR assay for the specific and sensitive detection of Trypanosoma spp. in naturally infected dairy cattle in peri-urban Kampala, Uganda. Ann N Y Acad Sci. 1998;849:21–31.

    Article  Google Scholar 

  78. Connor RJ, Halliwell RW. Bovine trypanosomiasis in Southern Tanzania: parasitological and serological survey of prevalence. Trop Anim Health Prod. 1987;19:165–72.

    Article  CAS  PubMed  Google Scholar 

  79. Cordon-Obras C, Berzosa P, Ndong-Mabale N, Bobuakasi L, Buatiche JN, Ndongo-Asumu P, et al. Trypanosoma brucei gambiense in domestic livestock of Kogo and Mbini foci (Equatorial Guinea). Trop Med Int Heal. 2009;14:535–41.

    Article  CAS  Google Scholar 

  80. Cossic BGA, Adjahoutonon B, Gloaguen P, Dibanganga GL, Maganga G, Leroy P, et al. Trypanosomiasis challenge estimation using the diminazene aceturate (Berenil) index in Zebu in Gabon. Trop Anim Health Prod. 2017;49:619–24.

    Article  PubMed  PubMed Central  Google Scholar 

  81. de Costa VMM, Ribeiro MFB, Duarte ALL, Mangueira JM, Pessoa AFA, Azevedo SS, et al. Seroprevalence and risk factors for cattle anaplasmosis, babesiosis, and trypanosomiasis in a Brazilian semiarid region. Rev Bras Parasitol Vet. 2013;22:207–13.

    Article  PubMed  Google Scholar 

  82. Cox AP, Tosas O, Tilley A, Picozzi K, Coleman P, Hide G, et al. Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle. Parasites Vectors. 2010;3:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cuglovici DA, Bartholomeu DC, Reis-Cunha JL, Carvalho AU, Ribeiro MFB. Epidemiologic aspects of an outbreak of Trypanosoma vivax in a dairy cattle herd in Minas Gerais state, Brazil. Vet Parasitol. 2010;169:320–6.

    Article  CAS  PubMed  Google Scholar 

  84. Da SAS, Perez HAG, Costa MM, Da Silva AS, Garcia Perez HA, Costa MM, et al. Horses naturally infected by Trypanosoma vivax in southern Brazil. Parasitol Res. 2011;108:23–30.

    Article  Google Scholar 

  85. da Silva AS, Costa MM, Polenz MF, Polenz CH, Teixeira MMG, Lopes STA, et al. First report of Trypanosoma vixax in bovines in the State of Rio Grande do Sul, Brazil. Cienc Rural. 2009;39:2550–4.

    Google Scholar 

  86. Dagnachew S, Girma H, Abebe G. A cross-sectional study on bovine trypanosomosis in Jawi district of Amhara Region, Northwest Ethiopia. Ethiop Vet J. 2011;15:69–78.

    Article  Google Scholar 

  87. Dagnachew S, Tsegaye B, Awukew A, Tilahun M, Ashenafi H, Rowan T, et al. Prevalence of bovine trypanosomosis and assessment of trypanocidal drug resistance in tsetse infested and non-tsetse infested areas of Northwest Ethiopia. Parasite Epidemiol Control. 2017;2:40–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Danbirni S, Okaiyeto SO, Kudi AC, Pewan SB. Bovine trypanosomosis and tuberculosis in a nomadic herd in Sabon gari local government area of Kaduna state, Nigeria. J Anim Vet Adv. 2010;9:1285–8.

    Article  Google Scholar 

  89. Daniel AD, Joshua RA, Kalejaiye JO, Dada AJ. Prevalence of trypanosomiasis in sheep and goats in a region of northern Nigeria. Rev Elev Med Vet Pays Trop. 1994;47:295–7.

    Article  CAS  PubMed  Google Scholar 

  90. Dayo G-KK, Bengaly Z, Messad S, Bucheton B, Sidibe I, Cene B, et al. Prevalence and incidence of bovine trypanosomosis in an agro-pastoral area of southwestern Burkina Faso. Res Vet Sci. 2010;88:470–7.

    Article  PubMed  Google Scholar 

  91. De Araujo MS, Barros ACE, Costa FB, De Carvalho Neta AV, De Candanedo GRDMN, Abreu-Silva AL. Bovine trypanosomiasis an emerging disease in Maranhão State-Brazil. Vector-Borne Zoonotic Dis. 2011;11:853–6.

    Article  Google Scholar 

  92. Degneh E, Shibeshi W, Terefe G, Asres K, Ashenafi H. Bovine trypanosomosis: changes in parasitemia and packed cell volume in dry and wet seasons at Gidami district, Oromia Regional State, western Ethiopia. Acta Vet Scand. 2017;59:59.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Delafosse A, Thebaud E, Desquesnes M, Michaux Y. Epidemiology of Trypanosoma vivax infection in cattle in the tse-tse free area of Lake Chad. Prev Vet Med. 2006;74:108–19.

    Article  PubMed  Google Scholar 

  94. de Melo BJ, Blanco YAC, Bruhn FRP, Guimaraes AM. Seroprevalence of Trypanosoma vivax, anaplasma marginale, and babesia bovis in dairy cattle. Cienc Anim Bras. 2016;17:564–73.

    Article  Google Scholar 

  95. Desquesnes M, Gardiner PR. Epidemiology of bovine trypanosomiasis (Trypanosoma vivax) in French Guiana. Rev Elev Med Vet Pays Trop. 1993;46:463–70.

    Article  CAS  PubMed  Google Scholar 

  96. Dhollander S, Jallow A, Mbodge K, Kora S, Sanneh M, Gaye M, et al. Equine trypanosomosis in the Central River Division of The Gambia: a study of veterinary gate-clinic consultation records. Prev Vet Med. 2006;75:152–62.

    Article  CAS  PubMed  Google Scholar 

  97. Dillmann JSS, Townsend AJ. A trypanosomiasis survey of wild animals in the Luangwa Valley Zambia. Acta Trop. 1979;36:349.

    CAS  PubMed  Google Scholar 

  98. Dinka H, Abebe G. Small ruminants trypanosomosis in the southwest of Ethiopia. Small Rumin Res. 2005;57:239–43.

    Article  Google Scholar 

  99. Doko A, Guedegbe B, Baelmans R, Demey F, N’Diaye A, Pandey VS, et al. Trypanosomiasis in different breeds of cattle from Benin. Vet Parasitol. 1991;40:1–7.

    Article  CAS  PubMed  Google Scholar 

  100. Drager N, Mehlitz D. Investigations on the prevelance of trypanosome carriers and the antibody response in wildlife in Northern Botswana. Tropenmed Parasitol. 1978;29:223–33.

    CAS  PubMed  Google Scholar 

  101. Duguma R, Tasew S, Olani A, Damena D, Alemu D, Mulatu T, et al. Spatial distribution of Glossina sp. and Trypanosoma sp. in south-western Ethiopia. Parasites Vectors. 2015;8:430.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dwinger RH, Agyemang K, Kaufmann J, Grieve AS, Bah ML. Effects of trypanosome and helminth infections on health and production parameters of village N’Dama cattle in the Cambia. Vet Parasitol. 1994;54:353–65.

    Article  CAS  PubMed  Google Scholar 

  103. Efrem DB, Yacob HT, Hagos AT, Basu AK. Bovine trypanosomosis in Gimbi district of Western Oromia, Ethiopia. Anim Biol. 2010;60:123–31.

    Article  Google Scholar 

  104. Ehizibolo DO, Kamani J, Ehizibolo PO, Egwu KO, Dogo GI, Salami-Shinaba JO. Prevalence and significance of parasites of horses in some states of northern Nigeria. J Equine Sci. 2012;23:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Enwezor FNC, Samdi SM, Ijabor O, Abenga JN. The prevalence of bovine trypanosomes in parts of Benue state, north-central Nigeria. J Vector Borne Dis. 2012;49:188–90.

    CAS  PubMed  Google Scholar 

  106. Enwezor FNC, Bello B, Kalgo A, Zaria LT. Surveillance and management of trypanosomiasis in cattle herds in Kauru area, Kaduna State Nigeria. Livest Rear Farm Pract Dis. 2011;11:145–62.

    Google Scholar 

  107. Eyob A, Mekuria S, Regassa A, Abebe R. A cross-sectional study of equine trypanosomosis and its vectors in Wolayta zone, Southern Ethiopia. J Vet Med Anim Heal. 2011;3:21–6.

    Google Scholar 

  108. Ezeani MC, Okoro H, Anosa VO, Onyenekwe CC, Meludu SC, Dioka CE, et al. Immunodiagnosis of bovine trypanosomiasis in Anambra and Imo states, Nigeria, using enzyme-linked immunosorbent assay: Zoonotic implications to human health. J Vector Borne Dis. 2008;45:292–300.

    CAS  PubMed  Google Scholar 

  109. Fajinmi AO, Faleke OO, Magaji AA, Daneji AI, Gweba M, Fajinmi AO, Faleke OO, Magaji AA, Daneji AI, Gweba M. Presence of Trypanosome species and determination of anaemia in trade cattle at Sokoto Abattoir, Nigeria. Res J Parasitol. 2011;6:31–42.

    Article  Google Scholar 

  110. Fakae BB, Chiejina SN. The prevalence of concurrent trypanosome and gastrointestinal nematode infections in West African Dwarf sheep and goats in Nsukka area of eastern Nigeria. Vet Parasitol. 1993;49:313–8.

    Article  CAS  PubMed  Google Scholar 

  111. Fall A, Diack A, Diaite A, Seye M, D’Ieteren GDM, Diaité A, et al. Tsetse challenge, trypanosome and helminth infection in relation to productivity of village Ndama cattle in Senegal. Vet Parasitol. 1999;81:235–47.

    Article  CAS  PubMed  Google Scholar 

  112. Fávero JF, Da Silva AS, Biazus AH, Volpato A. Trypanosoma vivax infection in goat in west of Santa Catarina state, Brazil. Comp Clin Path. 2016;25:497–9.

    Article  Google Scholar 

  113. Fentahun T, Tekeba M, Mitiku T, Chanie M. Prevalence of bovine trypanosomosis and distribution of vectors in Hawa Gelan district, Oromia region, Ethiopia. Glob Vet. 2012;9:297–302.

    Google Scholar 

  114. Regassa F, Goddeeris BM, Delespaux V, Moti Y, Tadesse A, Bekana M, et al. Widespread occurrence of Trypanosoma vivax in bovines of tsetse- as well as non-tsetse-infested regions of Ethiopia: a reason for concern? Vet Parasitol. 2012;190:355–61.

    Article  Google Scholar 

  115. Regassa F, Andualem Y, Getachew T, Menten J, Hasker E, Merga B, et al. Trypanosome infection in dromedary camels in eastern Ethiopia: Prevalence, relative performance of diagnostic tools and host related risk factors. Vet Parasitol. 2015;211:175–81.

    Article  Google Scholar 

  116. Galiza GJN, Garcia HA, Assis ACO, Oliveira DM, Pimentel LA, Dantas AFM, et al. High mortality and lesions of the central nervous system in trypanosomosis by Trypanosoma vivax in Brazilian hair sheep. Vet Parasitol. 2011;182:359–63.

    Article  CAS  PubMed  Google Scholar 

  117. Ganyo EY, Boampong JN, Masiga DK, Villinger J, Turkson PK. Haematology of N’Dama and West African Short Horn cattle herds under natural Trypanosoma vivax challenge in Ghana. F1000Research. 2018;7:314.

    PubMed  PubMed Central  Google Scholar 

  118. Garcia H, Garcia M-E, Perez H, Mendoza-Leon A. The detection and PCR-based characterization of the parasites causing trypanosomiasis in water-buffalo herds in Venezuela. Ann Trop Med Parasitol. 2005;99:359–70.

    Article  CAS  PubMed  Google Scholar 

  119. García H, García M-EE, Pérez G, Bethencourt A, Zerpa É, Pérez H, et al. Trypanosomiasis in Venezuelan water buffaloes: Association of packed-cell volumes with seroprevalence and current trypanosome infection. Ann Trop Med Parasitol. 2006;100:297–305.

    Article  PubMed  Google Scholar 

  120. García H, Rangel-Rivas A, Contreras I, García M-E, García F, Perrone T. Molecular characterization of Trypanosoma vivax in naturally-infected sheep from two farms at San Fernando and Biruaca Counties, Apure State, Venezuela. Rev Cient la Fac Ciencias Vet la Univ del Zulia. 2009;19:230–7.

    Google Scholar 

  121. Garcia HA, Ramirez OJ, Rodrigues CMF, Sanchez RG, Bethencourt AM, Del M, Perez G, et al. Trypanosoma vivax in water buffalo of the Venezuelan Llanos: an unusual outbreak of wasting disease in an endemic area of typically asymptomatic infections. Vet Parasitol. 2016;230:49–55.

    Article  PubMed  Google Scholar 

  122. Girmay G, Arega B, Tesfaye D, Berkvens D, Muleta G, Asefa G. Community-based tsetse fly control significantly reduces fly density and trypanosomosis prevalence in Metekel Zone, Northwest, Ethiopia. Trop Anim Health Prod. 2016;48:633–42.

    Article  PubMed  Google Scholar 

  123. Gonzales JL, Chacon E, Miranda M, Loza A, Siles LM. Bovine trypanosomosis in the Bolivian Pantanal. Vet Parasitol. 2007;146:9–16.

    Article  CAS  PubMed  Google Scholar 

  124. González JR, Meléndez RD. Seroprevalence of bovine trypanosomosis and anaplasmosis by ELISA at Juan Jose Mora county, Carabobo State, Venezuela. Rev Cient la Fac Ciencias Vet la Univ del Zulia. 2007;17:449–55.

    Google Scholar 

  125. Guedes Junior DS, Araújo FR, Silva FJMM, Rangel CP, Barbosa Neto JD, Fonseca AH. Frequency of antibodies to Babesia bigemina, B bovis, Anaplasma marginale, Trypanosoma vivax and Borrelia burgdorferi in cattle from the Northeastern region of the State of Pará, Brazil. Rev Bras Parasitol Vet. 2008;17:105–9.

    Article  Google Scholar 

  126. Guerra RDMSNDC, Feitosa AB, Santos HP, Abreu-Silva AL, Santos ACG, Dos Feitosa AB, et al. Biometry of Trypanosoma vivax found in a calf in the state of Maranhão Brazil. Cienc Rural. 2008;38:833–5.

    Article  Google Scholar 

  127. Guerra NR, Monteiro MFM, Sandes HMM, Da Cruz NLN, Ramos CAN, De Assis Santana VL, et al. Detection of IgG antibodies against Trypanosoma vivax in cattle by indirect immunofluorescence test. Pesqui Vet Bras. 2013;33:1423–6.

    Article  Google Scholar 

  128. Gueye A, Mbengue M, Diouf A. Ticks and hemoparasitoses of livestock in Senegal. III. The Northern Sudan area. Rev Elev Med Vet Pays Trop. 1989;42:411–20.

    CAS  PubMed  Google Scholar 

  129. Gueye A, Mbengue M, Diouf A, Sonko ML. Ticks and hemoparasitoses in livestock in Senegal. V. The northern Guinea area. Rev Elev Med Vet Pays Trop. 1993;46:551–61.

    Article  CAS  PubMed  Google Scholar 

  130. Haji IJ, Malele I, Namangala B. Occurrence of haemoparasites in cattle in Monduli district, northern Tanzania. Onderstepoort J Vet Res. 2014;81:1–4.

    Article  Google Scholar 

  131. Haji IJ, Sugimoto C, Kajino K, Malele I, Simukoko H, Chitambo H, et al. Determination of the prevalence of trypanosome species in cattle from Monduli district, northern Tanzania, by loop mediated isothermal amplification. Trop Anim Health Prod. 2015;47:1139–43.

    Article  PubMed  Google Scholar 

  132. Hall MJR, Kheir SM, Rahman AHA, Noga S. Tsetse and trypanosomiasis survey of southern darfur province, Sudan - I Bovine trypanosomiasis. Trop Anim Health Prod. 1983;15:191–206.

    Article  CAS  PubMed  Google Scholar 

  133. Hamill LC, Kaare MT, Welburn SC, Picozzi K. Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania. Parasites Vectors. 2013;6:1–7.

    Article  Google Scholar 

  134. Idehen CO, Ishola OO, Adeyemi IG, Abongaby G, Olaleye OO, Aluma AL, et al. Prevalence of African trypanosomosis in cattle and sheep in Bassa local government area of Plateau State, Nigeria. Sokoto J Vet Sci. 2018;16:11–7.

    Article  Google Scholar 

  135. Jaimes-Dueñez J, Triana-Chávez O, Mejía-Jaramillo AM. Spatial-temporal and phylogeographic characterization of Trypanosoma spp. in cattle (Bos taurus) and buffaloes (Bubalus bubalis) reveals transmission dynamics of these parasites in Colombia. Vet Parasitol. 2018;249:30–42.

    Article  PubMed  CAS  Google Scholar 

  136. Jaimes-Dueñez J, Zapata-Zapata C, Triana-Chávez O, Mejía-Jaramillo AM. Evaluation of an alternative indirect-ELISA test using in vitro-propagated Trypanosoma brucei brucei whole cell lysate as antigen for the detection of anti-Trypanosoma evansi IgG in Colombian livestock. Prev Vet Med. 2019;169:104712.

    Article  PubMed  Google Scholar 

  137. Joshua RA. Occurrence of human serum-resistant Trypanosoma congolense in goats and sheep in Nigeria. Vet Parasitol. 1989;31:107–13.

    Article  CAS  PubMed  Google Scholar 

  138. Kalu AU, Oboegbulem SI, Uzoukwu M. Trypanosomosis in small ruminants maintained by low riverine tsetse population in central Nigeria. Small Rumin Res. 2001;40:109–15.

    Article  PubMed  Google Scholar 

  139. Kalu AU. Prevalence of trypanosomiasis among Trypanotolerant cattle at the lower Benue River area of Nigeria. Prev Vet Med. 1995;24:97–103.

    Article  Google Scholar 

  140. Kalu AU. Current status of tsetse fly and animal trypanosomosis on the Jos Plateau, Nigeria. Prev Vet Med. 1996;27:107–13.

    Article  Google Scholar 

  141. Karimuribo ED, Morrison LJ, Black A, Turner CMR, Kambarage DM, Ballingall KT. Analysis of host genetic factors influencing African trypanosome species infection in a cohort of Tanzanian Bos indicus cattle. Vet Parasitol. 2011;179:35–42.

    Article  PubMed  Google Scholar 

  142. Kassaye BK. Prevalence of bovine Trypanosomosis and apparent density of tsetse flies in Sayonole district Western Oromia, Ethiopia. J Vet Sci Technol. 2015;6:254.

    Article  Google Scholar 

  143. Kayang BB, Bosompem KM, Assoku RKG, Awumbila B. Detection of Trypanosoma brucei, T. congolense and T. vivax infections in cattle, sheep and goats using latex agglutination. Int J Parasitol. 1997;27:83–7.

    Article  CAS  PubMed  Google Scholar 

  144. Kebede N, Fetene T, Animut A. Prevalence of Trypanosomosis of small ruminants in Guangua district of Awi Zone, northwestern Ethiopia. J Infect Dev Ctries. 2009;3:245–6.

    Article  PubMed  Google Scholar 

  145. Kidanemariam A, Hadgu K, Sahle M. Parasitological prevalence of bovine trypanosomosis in Kindo Koisha district, Wollaita zone, south Ethiopia. Onderstepoort J Vet Res. 2002;69:107–13.

    CAS  PubMed  Google Scholar 

  146. Kihurani DO, Nantulya VM, Mbiuki SM, Mogoa E, Nguhiu-Mwangi J, Mbithi PM. Trypanosoma brucei, T. congolense and T. vivax infections in horses on a farm in Kenya. Trop Anim Health Prod. 1994;26:95–101.

    Article  CAS  PubMed  Google Scholar 

  147. Kimaro EG, Toribio J-AALML, Gwakisa P, Mor SM. Occurrence of trypanosome infections in cattle in relation to season, livestock movement and management practices of Maasai pastoralists in Northern Tanzania. Vet Parasitol Reg Stud Reports. 2018;12:91–8.

    PubMed  Google Scholar 

  148. Kouadio IK, Sokouri D, Koffi M, Konaté I, Ahouty B, Koffi A, et al. Molecular characterization and prevalence of Trypanosoma species in cattle from a northern livestock area in Côte d’Ivoire. Open J Vet Med. 2014;4:314–21.

    Article  Google Scholar 

  149. Laohasinnarong D, Thekisoe OMM, Malele I, Namangala B, Ishii A, Goto Y, et al. Prevalence of Trypanosoma sp. in cattle from Tanzania estimated by conventional PCR and loop-mediated isothermal amplification (LAMP). Parasitol Res. 2011;109:1735–9.

    Article  PubMed  Google Scholar 

  150. Laohasinnarong D, Goto Y, Asada M, Nakao R, Hayashida K, Kajino K, et al. Studies of trypanosomiasis in the Luangwa valley, north-eastern Zambia. Parasites Vectors. 2015;8:1–8.

    CAS  Google Scholar 

  151. Lefrançois T, Solano P, De La Rocque S, Bengaly Z, Reifenberg JM, Kabore I, et al. New epidemiological features on animal trypanosomiasis by molecular analysis in the pastoral zone of Sideradougou, Burkina Faso. Mol Ecol. 1998;7:897–904.

    Article  PubMed  Google Scholar 

  152. Lelisa K, Shimeles S, Bekele J, Sheferaw D. Bovine trypanosomosis and its fly vectors in three selected settlement areas of Hawa-Gelan district, western Ethiopia. Onderstepoort J Vet Res. 2014;81:1–5.

    Article  Google Scholar 

  153. Lema AA, Maigoro MA, Said M, Marwana AM, Nuraddeen W. Prevalence of bovine trypanasomosis in Katsina central abattoir, Katsina state. Niger J Parasitol. 2018;39:226–9.

    Article  Google Scholar 

  154. Lopes STP, da Prado BS, Martins GHC, Beserra HEA, de Sousa Filho MAC, de Evangelista LSM, et al. Trypanosoma vivax in dairy cattle. Acta Sci Vet. 2018;46:287.

    Google Scholar 

  155. Luckins AG, Mehlitz D. Evaluation of an indirect fluorescent antibody test, enzyme-linked immunosorbent assay and quantification of immunoglobulins in the diagnosis of bovine trypanosomiasis. Trop Anim Health Prod. 1978;10:149–59.

    Article  CAS  PubMed  Google Scholar 

  156. Madruga CR, Araujo FR, Cavalcante-Goes G, Martins C, Pfeifer IB, Ribeiro LR, et al. The development of an enzyme-linked immunosorbent assay for Trypanosoma vivax antibodies and its use in epidemiological surveys. Mem Inst Oswaldo Cruz. 2006;101:801–7.

    Article  CAS  PubMed  Google Scholar 

  157. Maganga GD, Mavoungou JFF, N’dilimabaka N, Kinga IC, Mve-Ondo B, Mombo IM, et al. Molecular identification of trypanosome species in trypanotolerant cattle from the south of Gabon. Parasite. 2017;24:4.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Magona JW, Kakaire DW, Mayende JSP. Prevalence and distribution of animal trypanosomosis on Buvuma Islands in Lake Victoria, Uganda. Trop Anim Health Prod. 1999;31:83–7.

    Article  CAS  PubMed  Google Scholar 

  159. Magona JW, Greiner M, Mehlitz D. Impact of tsetse control on the age-specific prevalence of trypanosomosis in village cattle in southeast Uganda. Trop Anim Health Prod. 2000;32:87–98.

    Article  CAS  PubMed  Google Scholar 

  160. Magona JW, Mayende JSP, Walubengo J. Comparative evaluation of the antibody-detection ELISA technique using microplates precoated with denatured crude antigens from Trypanosoma congolense or Trypanosoma vivax. Trop Anim Health Prod. 2002;34:295–308.

    Article  CAS  PubMed  Google Scholar 

  161. Magona JW, Mayende JSP, Olaho-Mukani W, Coleman PG, Jonsson NN, Welburn SC, et al. A comparative study on the clinical, parasitological and molecular diagnosis of bovine trypanosomosis in Uganda. Onderstepoort J Vet Res. 2003;70:213–8.

    CAS  PubMed  Google Scholar 

  162. Magona JW, Walubengo J, Odimim JJ. Differences in susceptibility to trypanosome infection between Nkedi Zebu and Ankole cattle, under field conditions in Uganda. Ann Trop Med Parasitol. 2004;98:785–92.

    Article  CAS  PubMed  Google Scholar 

  163. Magona JW, Walubengo J, Odiit M, Okedi LA, Abila P, Katabazi BK, et al. Implications of the re-invasion of Southeast Uganda by Glossina pallidipes on the epidemiology of bovine trypanosomosis. Vet Parasitol. 2005;128:1–9.

    Article  CAS  PubMed  Google Scholar 

  164. Magona JW, Walubengo J, Odimin JT. Acute haemorrhagic syndrome of bovine trypanosomosis in Uganda. Acta Trop. 2008;107:186–91.

    Article  CAS  PubMed  Google Scholar 

  165. Magona JW, Walubengo J, Odimim JT. Differences in prevalence of trypanosomosis in Nkedi zebu, Ankole and crossbred cattle under tethering and open grazing management systems in Uganda. Livest Res Rural Dev. 2011;23:141.

    Google Scholar 

  166. Majekodunmi AO, Fajinmi A, Dongkum C, Picozzi K, Thrusfield MV, Welburn SC. A longitudinal survey of African animal trypanosomiasis in domestic cattle on the Jos Plateau, Nigeria: prevalence, distribution and risk factors. Parasit Vectors. 2013;6:239.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Makumyaviri AM, Ngarambe M. Parasitological and serological diagnosis of trypanosomiasis in cattle in the Northern-Kivu province, Congo. Rev Med Vet. 1997;148:809–12.

    Google Scholar 

  168. Makumyaviri A, Mehlitz D, Kageruka P, Kazyumba GL, Molisho D. Animal reservoir hosts of Trypanosoma brucei gambiense in Zaire: Trypanosome infections in two foci in Bas-Zaire. Trop Med Parasitol. 1989;40:258–62.

    CAS  PubMed  Google Scholar 

  169. Mamabolo MV, Ntantiso L, Latif A, Majiwa PAO. Natural infection of cattle and tsetse flies in South Africa with two genotypic groups of Trypanosoma congolense. Parasitology. 2009;136:425–31.

    Article  CAS  PubMed  Google Scholar 

  170. Mamoudou A, Njanloga A, Hayatou A, Suh PF, Achukwi MD. Animal trypanosomosis in clinically healthy cattle of north Cameroon: epidemiological implications. Parasites Vectors. 2016;9:206.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Manuel Tafur T, Amanda Chávez V, Eva Casas A, Enrique SM. Prevalence of Trypanosoma vivax in cattle in high forest of the province of Chachapoyas, Amazonas. Rev Investig Vet del Peru. 2002;13:94–7.

    Google Scholar 

  172. Masiga RC, Nyang’ao JMN. Identification of trypanosome species from camel using polymerase chain reaction and procyclic transformation test. J Camel Pract Res. 2001;8:17–22.

    Google Scholar 

  173. Mattioli RC, Faye JA, Jaitner J. Estimation of trypanosomal status by the buffy coat technique and an antibody ELISA for assessment of the impact of trypanosomosis on health and productivity of N’Dama cattle in The Gambia. Vet Parasitol. 2001;95:25–35.

    Article  CAS  PubMed  Google Scholar 

  174. Mbahin N, Affognon H, Andoke J, Tiberius M, Mbuvi D, Otieno J, et al. Parasitological prevalence of bovine trypanosomosis in Kubo division of Kwale county of coastal: baseline survey. Am J Anim Vet Sci. 2013;8:28–36.

    Article  Google Scholar 

  175. Mbewe NJ, Namangala B, Sitali L, Vorster I, Michelo C. Prevalence of pathogenic trypanosomes in anaemic cattle from trypanosomosis challenged areas of Itezhi-tezhi district in central Zambia. Parasit Vectors. 2015;8:638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mehlitz D. Trypanosome infections in domestic animals in Liberia. Tropenmed Parasitol. 1979;30:212–9.

    CAS  PubMed  Google Scholar 

  177. Mekata H, Konnai S, Witola WH, Inoue N, Onuma M, Ohashi K. Molecular detection of trypanosomes in cattle in South America and genetic diversity of Trypanosoma evansi based on expression-site-associated gene 6. Infect Genet Evol. 2009;9:1301–5.

    Article  CAS  PubMed  Google Scholar 

  178. Mekibib B, Manegerew M, Tadesse A, Abuna F, Megersa B, Regassa A, et al. Prevalence of haemoparasites and associated risk factors in working donkeys in Adigudem and Kwiha districts of Tigray region, northern Ethiopia. J Anim Vet Adv. 2010;9:2249–55.

    Article  Google Scholar 

  179. Mekonnen B, Regassa V, Kahsay AG. Epidemiology of trypanosomosis in goats in Abelti, Bede and Ghibe valley, south West Ethiopia. Int J Trop Med. 2014;9:10–4.

    Google Scholar 

  180. Mekuria S, Gadissa F. Survey on bovine trypanosomosis and its vector in Metekel and Awi zones of Northwest Ethiopia. Acta Trop. 2011;117:146–51.

    Article  PubMed  Google Scholar 

  181. Mekuria S, Eyob A, Regassa A, Tadesse A, Mekibib B, Abebe R. A cross-sectional study of equine trypanosomosis and its vectors in Wolayta zone, Southern Ethiopia. J Anim Vet Adv. 2010;9:2061–6.

    Article  Google Scholar 

  182. Melese M, Alemu S, Kemal J, Muktar Y, Abraha A. Vector identification and bovine trypanosomosis in edja district. South Ethiopia Livest Res Rural Dev. 2017;29:5.

    Google Scholar 

  183. Mihok S, Olubayo RO, Moloo SK. Trypanosomiasis in the black rhinoceros (Diceros bicornis Linnaeus, 1758). Rev Sci Tech. 1992;11:1169–73.

    Article  CAS  PubMed  Google Scholar 

  184. Mihret A, Mamo G. Bovine trypanosomosis in three districts of East Gojjam Zone bordering the Blue Nile River in Ethiopia. J Infect Dev Ctries. 2007;1:321–5.

    Article  PubMed  Google Scholar 

  185. Moll G, Lohding A, Young AS. Epidemiology of theilerioses in the Trans-Mara division, Kenya: Husbandry and disease background and preliminary investigations on theilerioses in calves. Prev Vet Med. 1984;2:801–31.

    Article  Google Scholar 

  186. Mossaad E, Salim B, Suganuma K, Musinguzi P, Hassan MA, Elamin EA, et al. Trypanosoma vivax is the second leading cause of camel trypanosomosis in Sudan after Trypanosoma evansi. Parasites and Vectors. 2017;10:1.

    Article  Google Scholar 

  187. Moti Y, Fikru R, Büscher P, Van Den Abbeele J, Duchateau L, Delespaux V. Detection of african animal trypanosomes: The haematocrit centrifugation technique compared to PCR with samples stored on filter paper or in DNA protecting buffer. Vet Parasitol. 2014;203:253–8.

    Article  CAS  PubMed  Google Scholar 

  188. Mugittu KN, Silayo RS, Majiwa PAO, Kimbita EK, Mutayoba BM, Maselle R. Application of PCR and DNA probes in the characterisation of trypanosomes in the blood of cattle in farms in Morogoro, Tanzania. Vet Parasitol. 2001;94:177–89.

    Article  CAS  PubMed  Google Scholar 

  189. Muhanguzi D, Mugenyi A, Bigirwa G, Kamusiime M, Kitibwa A, Akurut GG, et al. African animal trypanosomiasis as a constraint to livestock health and production in Karamoja region: a detailed qualitative and quantitative assessment. BMC Vet Res. 2017;13:1–3.

    Article  Google Scholar 

  190. Muhanguzi D, Picozzi K, Hattendorf J, Thrusfield M, Kabasa JD, Waiswa C, et al. The burden and spatial distribution of bovine African trypanosomes in small holder croplivestock production systems in Tororo district, south-eastern Uganda. Parasites Vectors. 2014;7:603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Mulaw S, Addis M, Fromsa A. Study on the prevalence of major trypanosomes affecting bovine in tsetse infested Asosa district of Benishangul Gumuz Regional State, Western Ethiopia. Glob Vet. 2011;7:330–6.

    Google Scholar 

  192. Mungube EO, Vitouley HS, Allegye-Cudjoe E, Diall O, Boucoum Z, Diarra B, et al. Detection of multiple drug-resistant Trypanosoma congolense populations in village cattle of south-east Mali. Parasites Vectors. 2012;5:155.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Musinguzi SP, Suganuma K, Asada M, Laohasinnarong D, Sivakumar T, Yokoyama N, et al. A PCR-based survey of animal African trypanosomosis and selected piroplasm parasites of cattle and goats in Zambia. J Vet Med Sci. 2016;78:1819–24.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mwambu PM, Mayende JSP. Salivarian trypanosome infections in cattle in Ikoma, South Mara district, Tanzania. Parasitology. 1973;66:381–5.

    Article  CAS  PubMed  Google Scholar 

  195. Mwambu PM. Prevalence of Trypanosoma vivax infection in cattle in Teso district, Eastern Uganda. Bull Epizoot Dis Afr. 1969;17:395–402.

    CAS  PubMed  Google Scholar 

  196. Mwangi EK, Stevenson P, Gettinby G, Reid SW, Murray M. Susceptibility to trypanosomosis of three Bos indicus cattle breeds in areas of differing tsetse fly challenge. Vet Parasitol. 1998;79:1–17.

    Article  CAS  PubMed  Google Scholar 

  197. N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, et al. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d’Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis. 2017;11:1–16.

    Article  Google Scholar 

  198. Nakayima J, Nakao R, Alhassan A, Mahama C, Afakye K, Sugimoto C. Molecular epidemiological studies on animal trypanosomiases in Ghana. Parasites Vectors. 2012;5:1–7.

    Article  Google Scholar 

  199. Nakayima J, Nakao R, Alhassan A, Hayashida K, Namangala B, Mahama C, et al. Genetic diversity among Trypanosoma (Duttonella) vivax strains from Zambia and Ghana, based on cathepsin L-like gene. Parasite. 2013;20:24.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Nantulya VM, Lindqvist KJ, Stevenson P, Mwangi EK. Application of a monoclonal antibody-based antigen detection enzyme-linked immunosorbent assay (antigen ELISA) for field diagnosis of bovine trypanosomiasis at Nguruman, Kenya. Ann Trop Med Parasitol. 1992;86:225–30.

    Article  CAS  PubMed  Google Scholar 

  201. Ngayo MO, Njiru ZK, Kenya EU, Muluvi GM, Osir EO, Masiga DK. Detection of trypanosomes in small ruminants and pigs in western Kenya: Important reservoirs in the epidemiology of sleeping sickness? Kinetoplastid Biol Dis. 2005;4:1–7.

    Article  CAS  Google Scholar 

  202. Ngomtcho SCH, Weber JS, Ngo Bum E, Gbem TT, Kelm S, Achukwi MD. Molecular screening of tsetse flies and cattle reveal different Trypanosoma species including T. grayi and T. theileri in northern Cameroon. Parasites Vectors. 2017;10:1–16.

    Article  CAS  Google Scholar 

  203. Nonga HE, Kambarage DM. Prevalence of Bovine trypanosomosis in Morogoro, Tanzania. Pakistan J Nutr. 2009;8:208–13.

    Article  Google Scholar 

  204. Nyimba PH, Komba EVG, Sugimoto C, Namangala B. Prevalence and species distribution of caprine trypanosomosis in Sinazongwe and Kalomo districts of Zambia. Vet Parasitol. 2015;210:125–30.

    Article  CAS  PubMed  Google Scholar 

  205. Ocaido M, Otim CP, Okuna NM, Erume J, Ssekitto C, Wafula RZOO, et al. Socio-economic and livestock disease survey of agropastoral communities in Serere county, Soroti district, Uganda. Livest Res Rural Dev. 2005;17.

  206. Ode S, Adamu M, Taioe M, Thekisoe O, Adamu S, Saror DI. Molecular occurrence of trypanosomes, erythrocyte and serum sialic acid concentrations of Muturu and Bunaji cattle in Benue State, Nigeria. Vet Parasitol. 2017;242:10–3.

    Article  CAS  PubMed  Google Scholar 

  207. Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Molecular identification of bovine trypanosomes in relation to cattle sources in southwest Nigeria. Parasitol Int. 2019;68:1–8.

    Article  CAS  PubMed  Google Scholar 

  208. Odongo S, Delespaux V, Ngotho M, Bekkele SM, Magez S. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya. J Vet Diagn Invest. 2016;28:589–94.

    Article  PubMed  Google Scholar 

  209. Okech G, Dolan RB, Stevenson P, Alushula H, Watson ED, Luckins AG, et al. The effect of trypanosomosis on pregnancy in trypanotolerant Orma Boran cattle. Theriogenology. 1996;46:441–7.

    Article  CAS  PubMed  Google Scholar 

  210. Oliveira JB, Hernández-Gamboa J, Jiménez-Alfaro C, Zeledón R, Blandón M, Urbina A, et al. First report of Trypanosoma vivax infection in dairy cattle from Costa Rica. Vet Parasitol. 2009;163:136–9.

    Article  CAS  PubMed  Google Scholar 

  211. Omoogun GA, Akinboade OA. Tsetse and bovine trypanosomosis incidence at Egbe in the derived savanna zone of nigeria. Insect Sci its Appl. 2000;20:215–9.

    Google Scholar 

  212. Ono MSB, Souto PC, Cruz JA, Guerra NR, Guimarães JA, Dantas AC, et al. Trypanosoma vivax outbreak in cattle in the ‘Zona da Mata’’ of the state of Pernambuco’. Med Vet. 2017;11:96–101.

    Google Scholar 

  213. Osaer S, Goossens B, Kora S, Gaye M, Darboe L. Health and productivity of traditionally managed Djallonke sheep and West African dwarf goats under high and moderate trypanosomosis risk. Vet Parasitol. 1999;82:101–19.

    Article  CAS  PubMed  Google Scholar 

  214. Osiyemi TIOO, Agbonlahor DEAA. Incidence of protozoan blood parasites in livestock in northern Nigeria. Trop Anim Health Prod. 1980;12:115.

    Article  CAS  PubMed  Google Scholar 

  215. Otte MJ, Abuabara JY, Nieto MI, Gutierrez JR. Incidence of Trypanosoma vivax infection on three cattle farms on the north coast of Colombia. Acta Vet Scand Suppl. 1988;84:104–6.

    CAS  PubMed  Google Scholar 

  216. Pagabeleguem S, Sangaré M, Bengaly Z, Akoudjin M, Belem AMGG, Bouyer J. Climate, cattle rearing systems and African animal trypanosomosis risk in Burkina Faso. PLoS ONE. 2012;7:e49762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Paoletta MS, López Arias L, de la Fournière S, Guillemi EC, Luciani C, Sarmiento NF, et al. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay. Ticks Tick Borne Dis. 2018;9:155–63.

    Article  PubMed  Google Scholar 

  218. De Pereira Almeida PJLL, Ndao M, Goossens B, Osaer S. PCR primer evaluation for the detection of trypanosome DNA in naturally infected goats. Vet Parasitol. 1998;80:111–6.

    Article  Google Scholar 

  219. Pereira HD, Simões SVDD, Souza FAL, Silveira JAG, Ribeiro MFB, Cadioli FA, et al. Clinical and epidemiological aspects and diagnosis of Trypanosoma vivax infection in a cattle herd, state of Maranhão, Brazil. Pesqui Vet Bras. 2018;38:896–901.

    Article  Google Scholar 

  220. de Souza Pimentel D, do Nascimento Ramos CA, Ramos RADNRA, de Araújo FR, Borba ML, da Gloria Faustino MA, et al. First report and molecular characterization of Trypanosoma vivax in cattle from state of Pernambuco, Brazil. Vet Parasitol. 2012;185:286–9.

    Article  CAS  Google Scholar 

  221. Ávila Pulgarín LS, Acevedo Restrepo A, Jurado Guevara JA, Polanco Echeverry D, Velásquez Vélez R, Zapata Salas R, et al. Hemoparasite infection in goats and sheep at five municipalities in north and northeastern Antioquia (Colombia). Rev CES Med Vet y Zootec. 2013;8:11–21.

    Google Scholar 

  222. Patricia Quispe A, Amanda Chávez V, Eva Casas A, Antonio Trigueros V, Francisco SA. Prevalence of Trypanosoma vivax in cattle from the Coronel Portillo province, Ucayali. Rev Investig Vet del Peru. 2003;14:161–5.

    Google Scholar 

  223. Rahman AHA. Observations on the trypanosomosis problem outside the tsetse belts of Sudan. Rev Sci Tech. 2005;24:965–72.

    CAS  PubMed  Google Scholar 

  224. Ramírez-Iglesias JR, Eleizalde MC, Reyna-Bello A, Mendoza M. Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections. J Parasit Dis. 2017;41:450–8.

    Article  PubMed  Google Scholar 

  225. Ravel S, Mediannikov O, Bossard G, Desquesnes M, Cuny G, Davoust B. A study on African animal trypanosomosis in four areas of Senegal. Folia Parasitol. 2015;62:2015.044.

    Article  CAS  Google Scholar 

  226. de Reis MO, Souza FR, Albuquerque AS, Monteiro F, Oliveira LFDS, Raymundo DL, et al. Epizootic Infection by Trypanosoma vivax in cattle from the State of Minas Gerais, Brazil. Korean J Parasitol. 2019;57:191–5.

    Article  CAS  PubMed  Google Scholar 

  227. Robson J, Rickman LR. Results of a field trial for the improved detection of Trypanosoma vivax in domestic animals. Bull Epizoot Dis Afr. 1972;20:297–9.

    CAS  PubMed  Google Scholar 

  228. Rodrigues CMF, Batista JS, Lima JM, Freitas FJC, Barros IO, Garcia HA, et al. Field and experimental symptomless infections support wandering donkeys as healthy carriers of Trypanosoma vivax in the Brazilian Semiarid, a region of outbreaks of high mortality in cattle and sheep. Parasit Vectors. 2015;8:564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Roeder PL, Scott JM, Pegram RG, Prod H. Acute Trypanosoma vivax infection of Ethiopian cattle in the apparent absence of tsetse. Trop Anim Health Prod. 1984;16:141–7.

    Article  CAS  PubMed  Google Scholar 

  230. Rowlands GJ, Leak SG, Peregrine AS, Nagda SM, Mulatu W, D’Ieteren GD. The incidence of new and the prevalence and persistence of recurrent trypanosome infections in cattle in southwest Ethiopia exposed to a high challenge with drug-resistant parasites. Acta Trop. 2001;79:149–63.

    Article  CAS  PubMed  Google Scholar 

  231. Sabir N, Chaudhry ZI, Aslam A, Muhammad K, Shahid M, Hussain A, et al. A study on prevalence and molecular characterization of trypanosomal species infecting equines in Lahore region, Pakistan. J Parasit Dis. 2018;42:96–101.

    Article  PubMed  Google Scholar 

  232. Salas RZ, Zuluaga EAC, Vélez JR, Chávez OT, García VHP, Osorio LAR, et al. Bovine trypanosomiasis in dairy farming in the high tropics: first report of Haematobia irritans as the main vector for T. vivax and T. evansi in Colombia. Rev Med Vet. 2017;33:21–34.

    Google Scholar 

  233. Salim B, Bakheit MA, Sugimoto C. Molecular detection of equine trypanosomes in the Sudan. Vet Parasitol. 2014;200:246–50.

    Article  CAS  PubMed  Google Scholar 

  234. Samdi S, Abenga JN, Fajinmi A, Kalgo A, Idowu T, Lawani F. Seasonal variation in trypanosomosis rates in small ruminants at the Kaduna abattoir, Nigeria. African J Biomed Res. 2008;11:229–32.

    Google Scholar 

  235. Samdi SM, Abenga JN, Wayo B, Mshelia WP, Musa D, Haruna MK, et al. The complementary roles of biting flies and reservoirs of infection: In the resurgent of African animal trypanosomosis in Keffi local Government area of Nassarawa state, Nigeria. Asian J Anim Vet Adv. 2010;6:316–21.

    Article  Google Scholar 

  236. Samdi SM, Fajinmi AO, Kalejaye JO, Wayo B, Haruna MK, Yarnap JE, et al. Prevalence of trypanosomosis in cattle at slaughter in Kaduna central Abattoir. Asian J Anim Sci. 2011;5:162–5.

    Article  Google Scholar 

  237. Sanni TM, Onasanya GO, Adefenwa MA, Yakubu A, Ikeobi CON, Adebambo OA, et al. Molecular diagnosis of subclinical African Trypanosoma vivax infection and association with physiological indices and serum metabolites in extensively managed goats in the tropics. Open J Vet Med. 2013;3:39–45.

    Article  CAS  Google Scholar 

  238. Seck MT, Bouyer J, Sall B, Bengaly Z, Vreysen MJB. The prevalence of African animal trypanosomoses and tsetse presence in Western Senegal. Parasite. 2010;17:257–65.

    Article  CAS  PubMed  Google Scholar 

  239. Sharma SP, Losho TC, Malau M, Mangate KG, Linchwe KB, Amanfu W, et al. The resurgence of trypanosomosis in Botswana. J S Afr Vet Assoc. 2001;72:232–4.

    Article  CAS  PubMed  Google Scholar 

  240. Sheferaw D, Birhanu B, Asrade B, Abera M, Tusse T, Fikadu A, et al. Bovine trypanosomosis and Glossina distribution in selected areas of southern part of Rift Valley, Ethiopia. Acta Trop. 2016;154:145–8.

    Article  PubMed  Google Scholar 

  241. Silbermayr K, Li F, Soudré A, Müller S, Sölkner J. A Novel qPCR assay for the detection of African animal trypanosomosis in trypanotolerant and trypanosusceptible cattle breeds. PLoS Negl Trop Dis. 2013;7:e2345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Silva RA, da Silva JA, Schneider RC, de Freitas J, Mesquita D, Mesquita T, et al. Outbreak of trypanosomiasis due to Trypanosoma vivax (Ziemann, 1905) in bovines of the Pantanal, Brazil. Mem Inst Oswaldo Cruz l. 1996;91:561–2.

    Article  CAS  Google Scholar 

  243. Silva RA, Morales G, Eulert E, Montenegro A, Ybanez R. Outbreaks of trypanosomosis due to Trypanosoma vivax in cattle in Bolivia. Vet Parasitol. 1998;76:153–7.

    Article  CAS  PubMed  Google Scholar 

  244. Silveira JAG, Rabelo TML, Lacerda ACR, Borges PAL, Tomás WM, Pellegrin AO, et al. Molecular detection and identification of hemoparasites in pampas deer (Ozotoceros bezoarticus Linnaeus, 1758) from the Pantanal Brazil. Ticks Tick Borne Dis. 2013;4:341–5.

    Article  PubMed  Google Scholar 

  245. Simo G, Asonganyi T, Nkinin SW, Njiokou F, Herder S. High prevalence of Trypanosoma brucei gambiense group 1 in pigs from the Fontem sleeping sickness focus in Cameroon. Vet Parasitol. 2006;139:57–66.

    Article  CAS  PubMed  Google Scholar 

  246. Simukoko H, Marcotty T, Phiri I, Geysen D, Vercruysse J, Van den Bossche P. The comparative role of cattle, goats and pigs in the epidemiology of livestock trypanosomiasis on the plateau of eastern Zambia. Vet Parasitol. 2007;147:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Simwango M, Ngonyoka A, Nnko HJ, Salekwa LP, Ole-Neselle M, Kimera SI, et al. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasites Vectors. 2017;10:1.

    Article  CAS  Google Scholar 

  248. Sinshaw A, Abebe G, Desquesnes M, Yoni W. Biting flies and Trypanosoma vivax infection in three highland districts bordering lake Tana Ethiopia. Vet Parasitol. 2006;142:35–46.

    Article  CAS  PubMed  Google Scholar 

  249. Sinyangwe L, Delespaux V, Brandt J, Geerts S, Mubanga J, Machila N, et al. Trypanocidal drug resistance in eastern province of Zambia. Vet Parasitol. 2004;119:125–35.

    Article  CAS  PubMed  Google Scholar 

  250. Snak A, Lara AA, Garcia FG, Pieri EM, Da Silveira JAG, Osaki SC, et al. Prevalence study on Trypanosoma vivax in dairy cattle in the western region on the State of Paraná, Brazil. Semin Ciências Agrárias. 2018;39:425–30.

    Article  CAS  Google Scholar 

  251. Solano P, Michel JF, Lefrancois T, de La Rocque S, Sidibe I, Zoungrana A, et al. Polymerase chain reaction as a diagnosis tool for detecting trypanosomes in naturally infected cattle in Burkina Faso. Vet Parasitol. 1999;86:95–103.

    Article  CAS  PubMed  Google Scholar 

  252. Sow A, Sidibe I, Bengaly Z, Marcotty T, Sere M, Diallo A, et al. Field detection of resistance to isometamidium chloride and diminazene aceturate in Trypanosoma vivax from the region of the Boucle du Mouhoun in Burkina Faso. Vet Parasitol. 2012;187:105–11.

    Article  CAS  PubMed  Google Scholar 

  253. Sow A, Ganaba R, Percoma L, Sidibé I, Bengaly Z, Adam Y, et al. Baseline survey of animal trypanosomosis in the region of the Boucle du Mouhoun, Burkina Faso. Res Vet Sci. 2013;94:573–8.

    Article  CAS  PubMed  Google Scholar 

  254. Specht EJK. Prevalence of bovine trypanosomosis in Central Mozambique from 2002 to 2005. Onderstepoort J Vet Res. 2008;75:73–81.

    Article  CAS  PubMed  Google Scholar 

  255. Suárez C, García F, Román D, Coronado A, Perrone T, Reyna A, et al. Risk factors associated with the bovine trypanosomosis of livestock farms in Venezuela. Zootec Trop. 2010;27:363–72.

    Google Scholar 

  256. Swai ES, Kaaya JE. A parasitological survey for bovine trypanosomosis in the livestock/wildlife ecozone of Northern Tanzania. Vet World. 2012;5:459–64.

    Article  Google Scholar 

  257. Tadesse A, Tsegaye B. Bovine trypanosomosis and its vectors in two districts of Bench Maji zone, South Western Ethiopia. Trop Anim Health Prod. 2010;42:1757–62.

    Article  PubMed  Google Scholar 

  258. Tafese W, Melaku A, Fentahun T. Prevalence of bovine trypanosomosis and its vectors in two districts of East Wollega Zone Ethiopia. Onderstepoort J Vet Res. 2012;79:E1-4.

    Article  PubMed  Google Scholar 

  259. Takeet MI, Fagbemi BO, De Donato M, Yakubu A, Rodulfo HE, Peters SO, et al. Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle. Res Vet Sci. 2013;94:555–61.

    Article  CAS  PubMed  Google Scholar 

  260. Tamasaukas R, Roa N, Cobo M. Trypanosomosis due to Trypanosoma vivax in two buffalo (Bubalus bubalis) farms of Guárico state, Venezuela. Rev Cient la Fac Ciencias Vet la Univ del Zulia. 2006;16:575–8.

    Google Scholar 

  261. Tarimo-Nesbitt RA, Golder TK, Dransfield RD, Chaudhury MF, Brightwell R. Trypanosome infection rate in cattle at Nguruman, Kenya. Vet Parasitol. 1999;81:107–17.

    Article  CAS  PubMed  Google Scholar 

  262. Tasew S, Duguma R. Cattle anaemia and trypanosomiasis in western Oromia State, Ethiopia. Rev Med Vet. 2012;163:581–8.

    Google Scholar 

  263. Tchamdja E, Kulo AE, Vitouley HS, Batawui K, Bankolé AA, Adomefa K, et al. Cattle breeding, trypanosomosis prevalence and drug resistance in Northern Togo. Vet Parasitol. 2017;236:86–92.

    Article  CAS  PubMed  Google Scholar 

  264. Terefe E, Haile A, Mulatu W, Dessie T, Mwai O. Phenotypic characteristics and trypanosome prevalence of Mursi cattle breed in the Bodi and Mursi districts of South Omo Zone, southwest Ethiopia. Trop Anim Health Prod. 2015;47:485–93.

    Article  PubMed  Google Scholar 

  265. Tesfaheywet Z, Getnet F, Ayana M. A cross-sectional study on the prevalence of bovine trypanosomosis in Amhara region, Northwest Ethiopia. Livest Res Rural Dev. 2012;24.

  266. Tesfaye D, Ibrahim N. Prevalence of bovine trypanosomosis in Assosa district of Benishangul Gumuz. Adv Biol Res. 2017;11:13–7.

    Google Scholar 

  267. Thumbi SM, Jung’A JO, Mosi RO, McOdimba FA. Spatial distribution of African animal trypanosomiasis in suba and teso districts in Western Kenya. BMC Res Notes. 2010;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Trail JC, D’Ieteren GD, Viviani P, Yangari G, Nantulya VM. Relationships between trypanosome infection measured by antigen detection enzyme immunoassays, anaemia and growth in trypanotolerant N’Dama cattle. Vet Parasitol. 1992;42:213–23.

    Article  CAS  PubMed  Google Scholar 

  269. Ukpai OM, Obasi NI. Prevalence of trypanosomiasis in relation to some haematological parameters in cattle, Ohafia LGA, Abia State Nigeria. Niger J Parasitol. 2017;38:250–2.

    Article  Google Scholar 

  270. Van Den Bossche P, Mudenge D, Mubanga J, Norval A. The parasitological and serological prevalence of tsetse-transmitted bovine trypanosomosis in the Eastern Caprivi (Caprivi District, Namibia). Onderstepoort J Vet Res. 1999;66:103–10.

    PubMed  Google Scholar 

  271. Van den Bossche P, Shumba W, Makhambera P. The distribution and epidemiology of bovine trypanosomosis in Malawi. Vet Parasitol. 2000;88:163–76.

    Article  PubMed  Google Scholar 

  272. Vokaty S, McPherson VO, Camus E, Applewhaite L. Ovine trypanosomosis: a seroepidemiological survey in coastal Guyana. Rev Elev Med Vet Pays Trop. 1993;46:57–9.

    Article  CAS  PubMed  Google Scholar 

  273. Waiswa C, Katunguka-Rwakishaya E. Bovine trypanosomiasis in south-western Uganda: packed-cell volumes and prevalences of infection in the cattle. Ann Trop Med Parasitol. 2004;98:21–7.

    Article  CAS  PubMed  Google Scholar 

  274. Wells EA, Betamcourt A, Ramirez LE. Serological evidence for the geographical distribution of Trypanosoma vivax in the new world. Trans R Soc Trop Med Hyg. 1977;71:448–9.

    Article  CAS  PubMed  Google Scholar 

  275. Wijers DJB. The complex epidemiology of Rhodesian sleeping sickness in Kenya and Uganda. Part II: observations in Samia (Kenya). Trop Geogr Med. 1974;26:182–97.

    CAS  PubMed  Google Scholar 

  276. Yesufu HM, Mshelbwala AS. Trypanosomiasis survey in cattle and tsetse flies along a trade cattle route in southwestern Nigeria. Ann Trop Med Parasitol. 1973;67:307–12.

    Article  CAS  PubMed  Google Scholar 

  277. Zanatto DCS, Gatto IRH, Labruna MB, Jusi MMG, Samara SI, Machado RZ, et al. Coxiella burnetii associated with BVDV (Bovine Viral Diarrhea Virus), BoHV (bovine herpesvirus), Leptospira spp., Neospora caninum, Toxoplasma gondii and Trypanosoma vivax in reproductive disorders in cattle. Rev Bras Parasitol Vet. 2019;28:245–57.

    Article  CAS  PubMed  Google Scholar 

  278. Cadioli FA, de Barnabe PA, Machado RZ, Teixeira MCA, Andre MR, Sampaio PH, et al. First report of Trypanosoma vivax outbreak in dairy cattle in Sao Paulo state Brazil. Rev Bras Parasitol Vet. 2012;21:118–24.

    Article  PubMed  Google Scholar 

  279. Ganyo EY, Boampong JN, Masiga DK, Villinger J, Turkson PK. Haematology of N’Dama and West African Shorthorn cattle herds under natural Trypanosoma vivax challenge in Ghana. F1000Research. 2018;7:314.

    PubMed  PubMed Central  Google Scholar 

  280. González JR, Meléndez RD. Seroprevalencia de la tripanosomosis y anaplasmosis bovina en el municipio Juan José Mora del estado Carabobo, Venezuela, Mediante la técnica de ELISA. Rev Cient la Fac Ciencias Vet la Univ del Zulia. 2007;17:449–55.

    Google Scholar 

  281. Lopes STP, da Prado BS, Martins GHC, Beserra HEA, de Sousa Filho MAC, de Evangelista LSM, et al. Trypanosoma vivax em bovino leiteiro. Acta Sci Vet. 2018;46:1–5.

    Google Scholar 

  282. Wijers DJB. The complex epidemiology of Rhodesian sleeping sickness in Kenya and Uganda. 1. The absence of the disease on Mfangano island (Kenya). Trop Geogr Med. 1974;26:58–64.

    CAS  PubMed  Google Scholar 

  283. Mihok S, Munyoki E, Brett RA, Jonyo JF, Röttcher D, Majiwa PAO, et al. Trypanosomiasis and the conservation of black rhinoceros (Diceros bicornis) at the Ngulia Rhino Sanctuary, Tsavo West National Park Kenya. Afr J Ecol. 1992;30:103–15.

    Article  Google Scholar 

  284. Thon MGA. Prevalence of trypansomosis in cattle in Juba Area, Central Equatoria State, Sudan. MTAH thesis, Department of Preventive Medicine Faculty of Veterinary Medicine University of Khartoum. Department of Preventive Medicine Faculty of Veterinary Medicine University of Khartoum; 2009.

  285. Shereni W, Anderson NE, Nyakupinda L, Cecchi G. Spatial distribution and trypanosome infection of tsetse flies in the sleeping sickness focus of Zimbabwe in Hurungwe District. Parasites Vectors. 2016;9:605.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Genevieve A-Y, Bakary C, Mavoungou JF, Silas Lendzele S, Abdallah NE. Preliminary study on vectors of bovine trypanosomosis in the central African republic one decade after the socio-military crisis. J Anim Plant Sci. 2019;39:6487–94.

    Google Scholar 

  287. Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, et al. Monitoring the elimination of human African trypanosomiasis: update to 2014. PLoS Negl Trop Dis. 2017;11:1–26.

    Article  Google Scholar 

  288. Ahmed SK, Rahman AH, Hassan MA, Salih SEM, Paone M, Cecchi G. An atlas of tsetse and bovine trypanosomosis in Sudan. Parasit Vectors. 2016;9:194.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Stephen LE. Trypanosomiasis A Veterinary Perspective. Oxford: Pergamon Press; 1986.

    Google Scholar 

  290. Aregawi WG, Agga GE, Abdi RD, Büscher P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasit Vectors. 2019;12(67):1–25.

    Google Scholar 

  291. Gardiner PR. Recent studies of the biology of Trypanosoma vivax. Adv Parasitol. 1989;28:229–317.

    Article  CAS  PubMed  Google Scholar 

  292. Desquesnes M. Evaluation of a simple PCR technique for the diagnosis of Trypanosoma vivax infection in the serum of cattle in comparison to parasitological techniques and antigen-enzyme-linked immuno sorbent assay. Acta Trop. 1997;65:139–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to staff members of the library of the Institute of Tropical Medicine Antwerp for providing some articles.

Funding

No funding was available for this study

Author information

Authors and Affiliations

Authors

Contributions

PB and FR conceived the research and SL designed the research; EF and SL drafted the manuscript. EF, SL and PB extracted and compiled the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samson Leta.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1.

Global Trypanosoma vivax occurrence records.

Additional file 2.

Forest plots showing an overview of studies reporting Trypanosoma vivax in different host species.

Additional file 3.

Forest plots showing an overview of studies reporting Trypanosoma vivax grouped by test methods in different host species.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetene, E., Leta, S., Regassa, F. et al. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasites Vectors 14, 80 (2021). https://doi.org/10.1186/s13071-021-04584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13071-021-04584-x

Keywords