Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363:1965–76.
CAS
PubMed
Google Scholar
Milne G, Webster JP, Walker M. Toxoplasma gondii: an underestimated threat? Trends Parasitol. 2020;36:959–69.
PubMed
Google Scholar
Batista SJ, Still KM, Johanson D, Thompson JA, O’Brien CA, Lukens JR. Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection. Nat Commun. 2020;11:3687.
CAS
PubMed
PubMed Central
Google Scholar
Nishiyama S, Pradipta A, Ma JS, Sasai M, Yamamoto M. T cell-derived interferon-γ is required for host defense to Toxoplasma gondii. Parasitol Int. 2020;75:102049.
CAS
PubMed
Google Scholar
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-dependent NK cell response is essential for protective immunity against secondary Toxoplasma gondii infection. J Immunol. 2019;203:2944–58.
CAS
PubMed
Google Scholar
Essandoh K, Li Y, Huo J, Fan GC. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 2016;46:122–31.
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Christian DA, Kochanowsky JA, Phan AT, Clark JT, Wang S, et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J Exp Med. 2020;217:e20181757.
PubMed
PubMed Central
Google Scholar
Wang JL, Bai MJ, Elsheikha HM, Liang QL, Li TT, Cao XZ, et al. Novel roles of dense granule protein 12 (GRA12) in Toxoplasma gondii infection. FASEB J. 2020;34:3165–78.
CAS
PubMed
Google Scholar
Mukhopadhyay D, Arranz-Solís D. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog. 2020;16:e1008586.
CAS
PubMed
PubMed Central
Google Scholar
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.
CAS
PubMed
Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.
CAS
PubMed
PubMed Central
Google Scholar
Pope SM, Lässer C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles. 2013;2:22484.
Google Scholar
Wowk PF, Zardo ML, Miot HT, Goldenberg S, Carvalho PC, Mörking PA. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii. Proteomics. 2017;17:1600477.
Google Scholar
Li Y, Liu Y, Xiu F, Wang J, Cong H, He S, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. Int J Nanomed. 2018;13:467–77.
CAS
Google Scholar
Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, Oliveira KC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response. Parasite Immunol. 2018;40:e12571.
PubMed
Google Scholar
Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Gava R, Gomes AHS, et al. Immunization with extracellular vesicles excreted by Toxoplasma gondii confers protection in murine infection, activating cellular and humoral responses. Int J Parasitol. 2021;51:559–69.
CAS
PubMed
Google Scholar
Beauvillain C, Juste MO, Dion S, Pierre J, Dimier-Poisson I. Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine. 2009;27:1750–7.
CAS
PubMed
Google Scholar
Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014;5:5488.
CAS
PubMed
Google Scholar
Samoil V, Dagenais M, Ganapathy V, Aldridge J, Glebov A, Jardim A, et al. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci Rep. 2018;8:3286.
PubMed
PubMed Central
Google Scholar
Długońska H, Gatkowska J. Exosomes in the context of Toxoplasma gondii-host communication. Ann Parasitol. 2016;62:169–74.
PubMed
Google Scholar
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19:160.
CAS
PubMed
PubMed Central
Google Scholar
Manca S, Upadhyaya B. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep. 2018;8:11321.
PubMed
PubMed Central
Google Scholar
Liu J, Zhu L, Wang J. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. PLoS Pathog. 2019;15:e1007817.
CAS
PubMed
PubMed Central
Google Scholar
Dupont CD, Christian DA, Selleck EM, Pepper M, Leney-Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047.
PubMed
PubMed Central
Google Scholar
Poncet AF, Blanchard N, Marion S. Toxoplasma and dendritic cells: an intimate relationship that deserves further scrutiny. Trends Parasitol. 2019;35:870–86.
CAS
PubMed
Google Scholar
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From entry to early dissemination-Toxoplasma gondii’s initial encounter with its host. Front Cell Infect Microbiol. 2019;9:46.
PubMed
PubMed Central
Google Scholar
Li DL, Zou WH, Deng SQ, Peng HJ. Analysis of the differential exosomal miRNAs of DC2.4 dendritic cells induced by Toxoplasma gondii infection. Int J Mol Sci. 2019;20:5506.
CAS
PubMed Central
Google Scholar
Xu H, Ling M, Xue J, Dai X, Sun Q, Chen C, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics. 2018;8:5419–33.
CAS
PubMed
PubMed Central
Google Scholar
Kong L, Jiang D, He C, Xia J, Wei H, Zhou L, et al. TgROP18 targets IL20RB for host-defense-related-STAT3 activation during Toxoplasma gondii infection. Parasit Vectors. 2020;13:400.
CAS
PubMed
PubMed Central
Google Scholar
Lin WC, Tsai CY, Huang JM, Wu SR, Chu LJ, Huang KY. Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors. 2019;12:467.
PubMed
PubMed Central
Google Scholar
Wu SZ, Wei HX, Jiang D, Li SM, Zou WH, Peng HJ. Genome-wide CRISPR screen identifies host factors required by Toxoplasma gondii infection. Front Cell Infect Microbiol. 2019;9:460.
CAS
PubMed
Google Scholar
Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the mir155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.
CAS
PubMed
Google Scholar
Ilangumaran S, Bobbala D, Ramanathan S. SOCS1: regulator of T cells in autoimmunity and cancer. Curr Top Microbiol Immunol. 2017;410:159–89.
PubMed
Google Scholar
Mukhopadhyay D, Sangaré LO, Braun L, Hakimi MA. Toxoplasma GRA15 limits parasite growth in IFN-γ-activated fibroblasts through TRAF ubiquitin ligases. EMBO J. 2020;39:e103758.
CAS
PubMed
PubMed Central
Google Scholar
Sasai M, Pradipta A, Yamamoto M. Host immune responses to Toxoplasma gondii. Int Immunol. 2018;30:113–9.
CAS
PubMed
Google Scholar
Lima TS, Lodoen MB. Mechanisms of human innate immune evasion by Toxoplasma gondii. Front Cell Infect Microbiol. 2019;9:103.
CAS
PubMed
PubMed Central
Google Scholar
Suzuki Y. The immune system utilizes two distinct effector mechanisms of T cells depending on two different life cycle stages of a single pathogen, Toxoplasma gondii, to control its cerebral infection. Parasitol Int. 2020;76:102030.
CAS
PubMed
Google Scholar
Lovo-Martins MI, Malvezi AD, Zanluqui NG, Lucchetti BFC, Tatakihara VLH, Mörking PA, et al. Extracellular vesicles shed by Trypanosoma cruzi potentiate infection and elicit lipid body formation and PGE(2) production in murine macrophages. Front Immunol. 2018;9:896.
PubMed
PubMed Central
Google Scholar
Liu H, Sun X, Gong X, Wang G. Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells. J Cell Biochem. 2019;120:14455–64.
CAS
PubMed
Google Scholar
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871:455–68.
CAS
PubMed
PubMed Central
Google Scholar
Khan IA, Ely KH, Kasper LH. Antigen-specific CD8+ T cell clone protects against acute Toxoplasma gondii infection in mice. J Immunol. 1994;152:1856–60.
CAS
PubMed
Google Scholar
Shirahata T, Yamashita T, Ohta C, Goto H, Nakane A. CD8+ T lymphocytes are the major cell population involved in the early gamma interferon response and resistance to acute primary Toxoplasma gondii infection in mice. Microbiol Immunol. 1994;38:789–96.
CAS
PubMed
Google Scholar
Park J, Hunter CA. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol. 2020;42:e12712.
CAS
PubMed
Google Scholar
Suzuki Y, Wang X, Jortner BS, Payne L, Ni Y, Michie SA, et al. Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am J Pathol. 2010;176:1607–13.
CAS
PubMed
PubMed Central
Google Scholar
Tsitsiklis A, Bangs DJ, Robey EA. CD8(+) T cell responses to Toxoplasma gondii: lessons from a successful parasite. Trends Parasitol. 2019;35:887–98.
CAS
PubMed
Google Scholar
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4(+) T cells during malaria. Immunol Rev. 2020;293:70–87.
CAS
PubMed
Google Scholar
Tiwari A, Hannah R, Lutshumba J, Ochiai E, Weiss LM, Suzuki Y. Penetration of CD8(+) cytotoxic T cells into large target, tissue cysts of Toxoplasma gondii, leads to its elimination. Am J Pathol. 2019;189:1594–607.
CAS
PubMed
PubMed Central
Google Scholar
Croston TL, Lemons AR, Beezhold DH, Green BJ. MicroRNA regulation of host immune responses following fungal exposure. Front Immunol. 2018;9:170.
PubMed
PubMed Central
Google Scholar
Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5:a011247.
PubMed
PubMed Central
Google Scholar
O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 2007;104:1604–9.
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Cheng W, Yu Q, Xing T, Chen S, Liu L, et al. Toxoplasma Chinese 1 Strain of WH3Δrop16(I/III) /gra15(II) genetic background contributes to abnormal pregnant outcomes in murine model. Front Immunol. 2018;9:1222.
PubMed
PubMed Central
Google Scholar
Yap GS, Sher A. Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology. 1999;201:240–7.
CAS
PubMed
Google Scholar
Lu LF, Gasteiger G, Yu IS, Chaudhry A, Hsin JP, Lu Y, et al. A single miRNA-mRNA interaction affects the immune response in a context- and cell-type-specific manner. Immunity. 2015;43:52–64.
CAS
PubMed
PubMed Central
Google Scholar
Ye J, Guo R, Shi Y, Qi F, Guo C, Yang L. mir-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis. Mediat Inflamm. 2016;2016:8060182.
Google Scholar
Shi D, Li D, Wang Q, Kong X, Mei H, Shen Y, et al. Silencing SOCS1 in dendritic cells promote survival of mice with systemic Candida albicans infection via inducing Th1-cell differentiation. Immunol Lett. 2018;197:53–62.
CAS
PubMed
Google Scholar
He Q, Sun C, Lei W, Ma J. SOCS1 regulates apoptosis and inflammation by inhibiting IL-4 signaling in IL-1β-stimulated human osteoarthritic chondrocytes. Biomed Res Int. 2017;2017:4601959.
PubMed
PubMed Central
Google Scholar
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative regulation of cytokine signaling in immunity. Cold Spring Harb Perspect Biol. 2018;10:a028571.
PubMed
PubMed Central
Google Scholar
Liang YB, Tang H, Chen ZB, Zeng LJ, Wu JG, Yang W, et al. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol Med Rep. 2017;16:6405–11.
CAS
PubMed
Google Scholar
Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol. 2018;1088:267–79.
CAS
PubMed
Google Scholar
Bando H, Lee Y, Sakaguchi N, Pradipta A, Sakamoto R, Tanaka S, et al. Toxoplasma effector GRA15-dependent suppression of IFN-γ-induced antiparasitic response in human neurons. Front Cell Infect Microbiol. 2019;9:140.
CAS
PubMed
PubMed Central
Google Scholar
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. 2018;9:1558.
PubMed
PubMed Central
Google Scholar
Stutz A, Kessler H, Kaschel ME, Meissner M, Dalpke AH. Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology. 2012;217:28–36.
CAS
PubMed
Google Scholar