Clements AN. The biology of mosquitoes: development, nutrition and reproduction. London: Chapman & Hall; 1992.
Google Scholar
Attardo GM, Hansen IA, Raikhel A. Nutritional regulation of vitellogenesis in mosquitoes: implications for autogeny. Insect Biochem Mol Biol. 2005;35:661–75.
Article
CAS
PubMed
Google Scholar
Nicolson SW. Nectar consumers. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 289–342.
Chapter
Google Scholar
Nepi M, Soligo C, Nocentini D, Abate M, Guarnieri M, Cai G, Bini L, Puglia M, Bianchi L, Pacini E. Amino acids and protein profile in floral nectar: much more than a simple reward. Flora. 2012;207:475–81.
Article
Google Scholar
Gottsberger G, Schrauwen J, Linskens H. Amino acids and sugars in nectar, and their putative evolutionary significance. Plant Syst Evol. 1984;145:55–77.
Article
CAS
Google Scholar
Barredo E, DeGennaro M. Not just from blood: mosquito nutrient acquisition from nectar sources. Trends Parasitol. 2020;36:473–84.
Article
PubMed
Google Scholar
Merritt RW, Dadd RH, Walker ED. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol. 1992;37:349–74.
Article
CAS
PubMed
Google Scholar
Roubaud E. Autogenous cycle of winter generations of Culex pipiens L. Compte Rendu de l’Acad des Sci. 1929;188:19292901774.
Google Scholar
Corbet PS. Facultative autogeny in arctic mosquitoes. Nature. 1967;215:662–3.
Article
Google Scholar
O’Meara GF. Variable expression of autogeny in three mosquito species. Intl J Invert Rep. 1979;1:253–61.
Article
Google Scholar
O’Meara G, Lounibos L. Reproductive maturation in the pitcher-plant mosquito Wyeomyia smithii. Physiol Ent. 1981;6:437–43.
Article
Google Scholar
Telang A, Wells MA. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol. 2004;50:677–85.
Article
CAS
PubMed
Google Scholar
Gulia-Nuss M, Eum J-H, Strand MR, Brown MR. Ovary ecdysteroidogenic hormone activates egg maturation in the mosquito Georgecraigius atropalpus after adult eclosion or a blood meal. J Exp Biol. 2012;215:3758–67.
CAS
PubMed
PubMed Central
Google Scholar
Ariani CV, Smith SCL, Osei-Poku J, Short K, Juneja P, Jiggins FM. Environmental and genetic factors determine whether the mosquito Aedes aegypti lays eggs without a blood meal. Am J Trop Med Hyg. 2015;92:715–21.
Article
PubMed
PubMed Central
Google Scholar
Coon KL, Valzania L, Brown MR, Strand MR. Predaceous Toxorhynchites mosquitoes require a living gut microbiota to develop. Proc Roy Soc B. 2020;287:20192705.
Article
Google Scholar
Harrison RE, Brown MR, Strand MR. Whole blood and blood components from vertebrates differentially affect egg formation in three species of anautogenous mosquitoes. Parasit Vectors. 2021;14:1–19.
Article
CAS
Google Scholar
Gonzales KK, Hansen IA. Artificial Diets for Mosquitoes. Int J Environ Res Public Health. 2016. https://doi.org/10.3390/ijerph13121267.
Article
PubMed
PubMed Central
Google Scholar
Griffith JS, Turner GD. Culturing Culex quinquefasciatus mosquitoes with a blood substitute diet for the females. Med Vet Entomol. 1996;10:265–8.
Article
CAS
PubMed
Google Scholar
Pitts RJ. A blood-free protein meal supporting oogenesis in the Asian tiger mosquito, Aedes albopictus (Skuse). J Insect Physiol. 2014;64:1–6.
Article
CAS
PubMed
Google Scholar
Talyuli OA, Bottino-Rojas V, Taracena ML, Soares AL, Oliveira JH, Oliveira PL. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. J Insect Physiol. 2015;83:1–7.
Article
CAS
PubMed
Google Scholar
Gonzales KK, Tsujimoto H, Hansen IA. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti. Peer J. 2015;3:e938.
Article
PubMed
PubMed Central
Google Scholar
Gonzales KK, Rodriguez SD, Chung HN, Kowalski M, Vulcan J, Moore EL, et al. The Effect of SkitoSnack, an artificial blood meal replacement, on Aedes aegypti life history traits and gut microbiota. Sci Rep. 2018;8:11023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baughman T, Peterson C, Ortega C, Preston SR, Paton C, Williams J, et al. A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes. PLoS Negl Trop Dis. 2017;11:e0006142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dutra HLC, Rodrigues SL, Mansur SB, De Oliveira SP, Caragata EP, Moreira LA. Development and physiological effects of an artificial diet for Wolbachia-infected Aedes aegypti. Sci Rep. 2017;7:1–11.
Article
CAS
Google Scholar
Kandel Y, Mitra S, Jimenez X, Rodriguesz SD, Romero A, Blakely BN, et al. Long-Term Mosquito culture with SkitoSnack, an artificial blood meal replacement. PLoS Negl Trop Dis. 2020;14:e0008591.
Article
PubMed
PubMed Central
Google Scholar
Fielding J. Notes on the bionomics of Stegomyia fasciata, Fabr.(Part I). Ann Trop Med Parasitol. 1919. https://doi.org/10.1080/00034983.1919.11684204.
Article
Google Scholar
Macgregor ME, Lee CU. Preliminary note on the artificial feeding of mosquitoes. Trans Roy Soc Trop Med Hyg. 1929. https://doi.org/10.1016/S0035-9203(29)90663-5.
Article
Google Scholar
Lea AO, Knierim JA, Dimond JB, DeLong DM. A preliminary note on egg production from milk-fed mosquitoes. Ohio J Sci. 1955;55:21.
Google Scholar
Stobbart RH. Selection of the yellow fever mosquito Aedes aegypti for cheap and easy maintenance without bloodmeals. Med Vet Entomol. 1992;6:87–9.
Article
CAS
PubMed
Google Scholar
da Silva Costa G, Rodrigues MMS, Silva de Almeida e A. Toward a blood-free diet for Anopheles darlingi (Diptera: Culicidae). J Med Ent. 2020;57(3):947–51.
Suman DS, Chandel K, Wang Y, Chandra K, Gaugler R. A membrane and blood-free approach to rear adult Aedes albopictus. Acta Trop. 2021;218:105895.
Article
CAS
PubMed
Google Scholar
Roy S, Smykal V, Johnson L, Saha T, Zou Z, Raikhel A. Regulation of reproductive processes in female mosquitoes. Adv Insect Physiol. 2016;51:115–44.
Article
Google Scholar
Zhu J, Noriega FG. The role of juvenile hormone in mosquito development and reproduction. Adv Insect Physiol. 2016;51:93–113.
Article
Google Scholar
Strand MR, Brown MR, Vogel KJ. Mosquito peptide hormones: diversity, production, and function. Adv Insect Physiol. 2016;51:145–88.
Article
CAS
Google Scholar
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol. 2019;454:85–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhara A, Eum JH, Robertson A, Gulia-Nuss M, Vogel KJ, Clark KD, et al. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito Aedes aegypti. Insect Biochem Mol Biol. 2013;43:1100–8.
Article
CAS
PubMed
Google Scholar
Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, et al. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2008;105:5716–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagedorn H, O’connor J, Fuchs MS, Sage B, Schlaeger DA, Bohm M. The ovary as a source of alpha-ecdysone in an adult mosquito. Proc Natl Acad Sci USA. 1975;72:3255–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen IA, Attardo GM, Rodriguez SD, Drake LL. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front Physiol. 2014;5:103.
Article
PubMed
PubMed Central
Google Scholar
Krieger MJB, Jahan N, Riehle MA, Cao C, Brown MR. Molecular characterization of insulin-like peptide genes and their expression in the African malaria mosquito Anopheles gambiae. Insect Mol Biol. 2004;13:305–15.
Article
CAS
PubMed
Google Scholar
Pondeville E, Maria A, Jacques J-C, Bourgouin C, Dauphin-Villemant C. Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc Natl Acad Sci USA. 2008;105:19631–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol. 2013;11:e1001695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuss AB, Brown MR, Murty US, Gulia-Nuss M. Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, Culex quinquefasciatus. PLoS Negl Trop Dis. 2018;12:e0006413.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Smet WH. The total protein content in the blood serum of 416 species and subspecies of. Acta Zool Pathol Antverp. 1978;70:35–56.
Google Scholar
Hawkey CM, Bennett PM, Gascoyne SC, Hart MG, Kirkwood JK. Erythrocyte size, number and haemoglobin content in vertebrates. HBr J Haematol. 1991;77:392–7.
Article
CAS
Google Scholar
Wang X, Ding Y, Lu X, Geng D, Li S, Raikhel AS, Zou Z. The ecdysone-induced protein 93 is a key factor regulating gonadotrophic cycles in the adult female mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2021;118:e2021910118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dayhoff MO. Atlas of protein sequence and structure. Washington: National Biomedical Research Foundation; 1972.
Google Scholar
Sherman I. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ. 1977;55:265.
CAS
PubMed
PubMed Central
Google Scholar
Sakai H, Takeoka S, Nishide H, Tsuchida E. Convenient method to purify hemoglobin. Artif Cells Nanomed Biotechnol. 1994;22:651–6.
CAS
Google Scholar
McKinney DA, Strand MR, Brown MR. Evaluation of ecdysteroid antisera for a competitive enzyme immunoassay and extraction procedures for the measurement of mosquito ecdysteroids. Gen Comp Endocrinol. 2017;253:60–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulia-Nuss M, Robertson AE, Brown MR, Strand MR. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti. PLoS ONE. 2011;6:e20401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Busche JM, Zhang X. Identification of juvenile hormone target genes in the adult female mosquitoes. Insect Biochem Mol Biol. 2010;40:23–9.
Article
PubMed
CAS
Google Scholar
Racioppi JV, Gemmill RM, Kogan PH, Calvo JM, Hagedorn HH. Expression and regulation of vitellogenin messenger RNA in the mosquito Aedes aegypti. Insect Biochem. 1986;16:255–62.
Article
CAS
Google Scholar
Romans P, Tu Z, Ke Z, Hagedorn HH. Analysis of a vitellogenin gene of the mosquito, Aedes aegypti and comparisons to vitellogenins from other organisms. Insect Biochem Mol Biol. 1995;25:939–58.
Article
CAS
PubMed
Google Scholar
Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci Rep. 2017;7:43618.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dittmer J, Alafndi A, Gabrieli P. Fat body-specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus. PLoS Biol. 2019;17:e3000238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop A, Gilchrist BM. Experiments upon the feeding of Aedes aegypti through animal membranes with a view to applying this method to the chemotherapy of malaria. Parasitol. 1946;37:85–100.
Article
CAS
Google Scholar
Briegel H. Mosquito reproduction: incomplete utilization of the blood meal protein for oögenesis. J Insect Physiol. 1985;31:15–21.
Article
CAS
Google Scholar
Li M, Mead EA, Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci USA. 2011;108:638–43.
Article
CAS
PubMed
Google Scholar
Saha TT, Roy S, Pei G, Dou W, Zou Z, Raikhel AS. Synergistic action of the transcription factors Kruppel homolog 1 and Hairy in juvenile hormone/ methoprene-tolerant-mediated-gene-repression in the mosquito Aedes aegypti. PLoS Genet. 2019;15:e1008443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2018;115:457–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutinho-Abreu IV, Riffell JA, Akbari OS. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol. 2021. https://doi.org/10.1016/j.pt.2021.09.012.
Article
PubMed
Google Scholar
Klowden MJ, Lea AO. Blood meal size as a factor affecting continued host-seeking by Aedes aegypti (L.). Am J Trop Med Hyg. 1978;27:827–31.
Article
CAS
PubMed
Google Scholar
Brown MR, Klowden MJ, Crim JW, Young L, Shrouder LA, Lea AO. Endogenous regulation of mosquito host-seeking behavior by a neuropeptide. J Insect Physiol. 1994;40:399–406.
Article
CAS
Google Scholar
Klowden MJ. Initiation and termination of host-seeking inhibition in Aedes aegypti during oöcyte maturation. J Insect Physiol. 1981;27:799–803.
Article
Google Scholar
Takken W, van Loon JJ, Adam W. Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding. J Insect Physiol. 2001;47:303–10.
Article
CAS
PubMed
Google Scholar
Klowden MJ, Lea AO. Abdominal distention terminates subsequent host-seeking behaviour of Aedes aegypti following a blood meal. J Insect Physiol. 1979;25:583–5.
Article
CAS
PubMed
Google Scholar
Duvall LB, Ramos-Espiritu L, Barsoum KE, Glickman JF, Vosshall LB. Small-molecule agonists of Aedes aegypti neuropeptide Y receptor block mosquito biting. Cell. 2019;176:687-701.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvall LB. Mosquito host-seeking regulation: targets for behavioral control. Trends Parasitol. 2019;35:704–14.
Article
PubMed
Google Scholar
Kelly TJ. Endocrinology of vitellogenesis in Drosophila melanogaster. In: Davy KG, Peter RE, Tobe SS, editors. Perspectives in comparative endocrinology. Ottawa National Research Council: Candda; 1994. p. 282–90.
Google Scholar
Adams TS, Gerst JW. Interaction between diet and hormones on vitellogenin levels in the housefly, Musca domestica. Invert Rep Devp. 1992;21:91–8.
Article
CAS
Google Scholar
Lamnissou K. Nutritional effects on vitellogenesis in species of Drosophila. J Entomol Sci. 2000;35:452–64.
Article
Google Scholar
Jove V, Gong Z, Hol FJH, Zhao Z, Sorrells TR, Carrroll TS, Prakash M, McBride CS, Vosshall LB. Sensory discrimination of blood and floral nectar by Aedes aegypti mosquitoes. Neuron. 2020;108:1163–80.
Article
CAS
PubMed
Google Scholar
Uchida K, Oda T, Matsuoka H, Moribayashi A, Ohmori D, Eshita Y, et al. Induction of oogenesis in mosquitoes (Diptera: Culicidae) by infusion of the hemocoel with amino acids. J Med Ent. 2001;38:572–5.
Article
CAS
Google Scholar
Boudko DY. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). J Insect Physiol. 2012;58:433–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics. 2018;210:357–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudko DY, Tsujimoto H, Rodriguez SD, Meleshkevitch EA, Price DP, Drake LL, Hansen IA. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti. Nat Comm. 2015;6:8546.
Article
CAS
Google Scholar
Stone C, Gross K. Evolution of host preference in anthropophilic mosquitoes. Malaria J. 2018;17:257.
Article
Google Scholar
Asigau S, Salah S, Parker PG. Assessing the blood meal hosts of Culex quinquefasciatus and Aedes taeniorhynchus in Isla Santa Cruz, Galápagos. Parasit Vectors. 2019;12:1–10.
Article
Google Scholar
Woke P. Comparative Effects of the Blood of Man and of Canary on Egg-Production of Culex pipiens Linn. J Parasit. 1937;23:311–3.
Article
Google Scholar
Jordan HB. The effects of the quality of blood and temperature on the production and viability of eggs in Culex qunquefasciatus. Mosq News. 1961;21:133–5.
Google Scholar
Shelton RM. The effects of blood source and quantity on production of eggs by Culex salinarius Coquillett (Diptera: Culicidae). Mosq News. 1972;31:31–7.
Google Scholar
Shroyer D, Siverly R. A comparison of egg production of Culex pipiens pipiens L. fed on avian and mammalian hosts. Mosq News. 1972;32:636–7.
Google Scholar
Downe AE, Archer JA. The effects of different blood-meal sources on digestion and egg production in Culex tarsalis Coq. (Diptera: Culicidae). J Med Ent. 1975;12:431–7.
Article
CAS
Google Scholar
Ferdousi Z, Islam MS. Impacts of vertebrate blood meals on reproductive performance, female size and male mating competitiveness in the mosquito Culex quinquefasciatus Say (Diptera: Culicidae). J Life Earth Sci. 2006;1:65–70.
Google Scholar
Norris LC, Fornadel CM, Hung W-C, Pineda FJ, Norris DE. Frequency of multiple blood meals taken in a single gonadotrophic cycle by Anopheles arabiensis mosquitoes in Macha Zambia. Am J Trop Med Hyg. 2010;83:33–7.
Article
PubMed
PubMed Central
Google Scholar
Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G. DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg. 2006;75:231.
Article
CAS
PubMed
Google Scholar
Soremekun S, Maxell C, Zuwakuu M, Chen C, Michael E, Curtis C. Measuring the efficacy of insecticide treated bednets: the use of DNA fingerprinting to increase the accuracy of personal protection estimates in Tanzania. Trop Med Int Health. 2004;9:664–72.
Article
CAS
PubMed
Google Scholar
Gabrieli P, Kakani EG, Mitchell Sn Mameli E, Want EJ, Mariezcurrena AA, Serrao A, Baldini F, Catteruccia F. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci USA. 2014;111:16353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckemeyer EF, Lea AO. Induction of follicle separation in the mosquito by physiological amounts of ecdysone. Science. 1980;209:819–21.
Article
CAS
PubMed
Google Scholar
Redfern CPF. 20-hydroxyecdysone and ovarian development in Anopheles stephensi. J Insect Physiol. 1982;28:97–109.
Article
CAS
Google Scholar
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28:114–21.
Article
PubMed
Google Scholar
Harrington LC, Edman JD. Indirect evidence against delayed “skip-oviposition” behavior by Aedes aegypti (Diptera: Culicidae) in Thailand. J Med Ent. 2001;38:641–5.
Article
CAS
Google Scholar
Armstrong PM, Ehrlich HY, Magalhaes T, Miller MR, Conway PJ, Bransfield A, Misencik MJ, Gloria-Soria A, Warren JL, Andreadis TG, Shepard JJ, Foy BD, Pitzer VE, Brackney DE. Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat Microbiol. 2020;5:239–47.
Article
CAS
PubMed
Google Scholar
Shaw WR, Holmdahl IE, Itoe MA, Werling K, Marquette M, Paton DG, Singh N, Buckee CO, Childs LM, Catteruccia F. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increase. PLoS Path. 2020;16:e10009131.
Article
CAS
Google Scholar