WHO. Vector-borne diseases. 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 16 Jun 2021.
Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Public Health Front. 2021;9:1–10.
Google Scholar
Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, et al. Vital signs: trends in reported vector-borne disease cases—United States and territories, 2004–2016. Morb Mortal Wkly Rep. 2018;67:496–501.
Article
Google Scholar
Dhimal M, Kramer IM, Phuyal P, Budhathoki SS, Hartke J, Ahrens B, et al. Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: a systematic synthesis of the literature. Adv Clim. 2021;12:421–9.
Google Scholar
Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35:1309–18.
Article
CAS
PubMed
Google Scholar
Burkett-Cadena ND, Vittor AY. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl Ecol. 2018;26:101–10.
Article
PubMed
Google Scholar
Franklinos LHV, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis. 2019;19:e302–12.
Article
PubMed
Google Scholar
Guzman G, Fuentes O, Martinez E, Perez AB, Whknno P. Dengue. In: International encyclopedia of public health, vol. 2. 2nd ed. Amsterdam: Elsevier; 2017. p. 233–57.
Chapter
Google Scholar
Gubler DJ, John ALS. Dengue viruses. In: Reference module in biomedical research. Amsterdam: Elsevier; 2014. p. 1–14.
Google Scholar
Lubinda J, Treviño CJA, Walsh MR, Moore AJ, Hanafi-Bojd AA, Akgun S, et al. Environmental suitability for Aedes aegypti and Aedes albopictus and the spatial distribution of major arboviral infections in Mexico. Parasite Epidemiol Control. 2019;6:1–10.
Article
Google Scholar
Jass A, Yerushalmi GY, Davis HE, Donini A, MacMillan HA. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Aedes aegypti. J Exp Biol. 2019. https://doi.org/10.1242/jeb.214056.
Article
PubMed
Google Scholar
Equiha M, Ibáñez-Bernal S, Benítez G, Estrada-Contreras I, Sandoval-Ruiz CA, Mendoza-Palmero FS. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: increasing number of population at risk of mosquito-borne disease and future climate conditions. Acta Tropica. 2016;166:316–27.
Article
Google Scholar
Dhimal M, Gautam I, Joshi HD, O’Hara RB, Ahrens B, Kuch U. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Negl Trop Dis. 2015;9:1–20.
Article
CAS
Google Scholar
Lima A, Lovin DD, Hickner PV, Severson DW. Evidence for an overwintering population of Aedes aegypti in Capitol Hill neighborhood, Washington, DC. Am J Trop Med Hyg. 2016;94:231–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caminade C, Medlock JM, Ducheyne E, Mcintyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012. https://doi.org/10.1098/rsif.2012.0138.
Article
PubMed
PubMed Central
Google Scholar
Pandey BD, Rai SK, Morita K, Kurane I. First case of dengue virus infection in Nepal. Nepal Med Coll J. 2004;6:157–9.
PubMed
Google Scholar
Gyawali N, Johnson BJ, Dixit SM, Devine GJ. Patterns of dengue in Nepal from 2010–2019 in relation to elevation and climate. Trans R Soc Trop Med Hyg. 2020. https://doi.org/10.1093/trstmh/traa131.
Article
Google Scholar
Acharya KP, Chaulagain B, Acharya N, Shrestha K, Subramanya SH. Establishment and recent surge in spatio-temporal spread of dengue in Nepal. Emerg Microbes Infect. 2020;9:676–9.
Article
PubMed
PubMed Central
Google Scholar
Adhikari N, Subedi D. The alarming outbreaks of dengue in Nepal. Trop Med Health. 2020;48:5–7.
Article
PubMed
PubMed Central
Google Scholar
Dhimal M, Ahrens B, Kuch U. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Parasites Vectors. 2014;7:1–11.
Article
Google Scholar
Dickens BL, Sun H, Jit M, Cook AR, Carrasco LR. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. albopictus. BMJ Global Health. 2018;3:1–11.
Article
Google Scholar
Kramer IM, Kreß A, Klingelhöfer D, Scherer C, Phuyal P, Kuch U, et al. Does winter cold really limit the dengue vector Aedes aegypti in Europe? Parasites Vectors. 2020;13:1–13.
Article
Google Scholar
Kramer IM, Pfeiffer M, Steffens O, Schneider F, Gerger V, Phuyal P, et al. The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ. 2021;778:146128.
Article
CAS
PubMed
Google Scholar
Gupta BP, Tuladhar R, Kurmi R, Manandhar KD. Dengue periodic outbreaks and epidemiological trends in Nepal. Ann clin microbiol. 2018;17:1–6.
Google Scholar
Dhimal M, Ahrens B, Kuch U. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal—a systematic synthesis of literature. PLoS ONE. 2015;10:1–31.
Article
CAS
Google Scholar
Tuladhar R, Singh A, Banjara MR, Gautam I, Dhimal M, Varma A, et al. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Parasites Vectors. 2019;12:1–15.
Article
Google Scholar
Phuyal P, Kramer IM, Klingelhöfer D, Kuch U, Madeburg A, Groneberg DA, et al. Spatiotemporal distribution of dengue and chikungunya in the Hindu Kush Himalayan region: a systematic review. Int J Environ Res. 2020;17:1–18.
Google Scholar
Ramalho-Ortigao M, Gubler DJ. Human diseases associated with vectors (arthropods in disease transmission). In: Hunter’s tropical medicine and emerging infectious diseases. Amsterdam: Elsevier; 2020. p. 1063–9.
Chapter
Google Scholar
Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, et al. DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasites Vectors. 2014;7:1–12.
Article
CAS
Google Scholar
Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour. 2014;14:892–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratnasingham S, Hebert PDN. Ratnasingham and Hebert 2007—BOLD—the barcode of life data system. Mol Ecol Notes. 2007;7:355–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience. 2018;7:1–14.
Article
CAS
Google Scholar
Srivathsan A, Hartop E, Puniamoorthy J, Lee WT, Kutty SN, Kurina O, et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 2019;17:622365.
Article
CAS
Google Scholar
Srivathsan A, Baloğlu B, Wang W, Tan WX, Bertrand D, Ng AHQ, et al. A MinION-based pipeline for fast and cost-effective DNA barcoding. Mol Ecol Resour. 2018;18:1035–49.
Article
CAS
Google Scholar
Menegon M, Cantaloni C, Rodriguez-Prieto A, Centomo C, Abdelfattah A, Rossato M, et al. On site DNA barcoding by nanopore sequencing. PLoS ONE. 2017;12:1–18.
Article
CAS
Google Scholar
Krehenwinkel H, Pomerantz A, Henderson JB, Kennedy SR, Lim JY, Swamy V, et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience. 2019;8:1–16.
Article
CAS
Google Scholar
Castro-Wallace SL, Chiu CY, John KK, Stahl SE, Rubins KH, McIntyre ABR, et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep. 2017;7:1–12.
Article
CAS
Google Scholar
Acharya KP, Phuyal S, Chand R, Kaphle K. Current scenario of and future perspective for scientific research in Nepal. Heliyon. 2021;7:e05751.
Article
PubMed
Google Scholar
Dhimal M. Climate Change and health: research challenges in vulnerable mountainous countries like Nepal. Switzerland: Global Forum for Health Research, Young Voices in Research for Health; 2008. p. 66–9.
Google Scholar
Kramer IM, Baral S, Gautam I, Braun M, Magdeburg A, Phuyal P, et al. STtech: sampling and transport techniques for Aedes eggs during a sampling campaign in a low-resource setting. Entomol Exp Appl. 2021;169:374–83.
Article
CAS
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol. 1994;3:294–9.
CAS
Google Scholar
Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun. 2016;7:11307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourke BP, Wilkerson RC, Linton YM. Molecular species delimitation reveals high diversity in the mosquito Anopheles tessellatus Theobald, 1901 (Diptera, Culicidae) across its range. Acta Tropica. 2021;215:105799.
Article
PubMed
Google Scholar
Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza MS. Analyzing mosquito (Diptera: Culicidae) diversity in Pakistan by DNA barcoding. PLoS ONE. 2014;9:e97268.
Article
PubMed
PubMed Central
CAS
Google Scholar
Namgay R, Pemo D, Wangdi T, Phanitchakun T, Harbach RE, Somboon P. Molecular and morphological evidence for sibling species within Anopheles (Anopheles) lindesayi Giles (Diptera: Culicidae) in Bhutan. Acta Trop. 2020;207:10455.
Article
CAS
Google Scholar
Saeung A, Otsuka Y, Baimai V, Somboon P, Pitasawat B, Tuetun B, et al. Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res. 2007;101:1337–44.
Article
PubMed
Google Scholar
Wilkerson RC, Linton Y-M, Strickman D. Mosquitoes of the world. Baltimore: Johns Hopkins University Press; 2021.
Google Scholar
Batovska J, Blacket MJ, Brown K, Lynch SE. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol. 2016;6:3001–11.
Article
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
Article
CAS
Google Scholar
Sonet G, Pauly A, Nagy ZT, Virgilio M, Jordaens K, van Houdt J, et al. Using next-generation sequencing to improve DNA barcoding: lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae). Apidologie. 2018;49:671–85.
Article
CAS
Google Scholar
Campana MG, Hawkins MTR, Henson LH, Stewardson K, Young HS, Card LR, et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol Ecol Res. 2016;16:1224–39.
Article
CAS
Google Scholar
Logue K, Keven JB, Cannon MV, Reimer L, Siba P, Walker ED, et al. Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLOS Negl Trop Dis. 2016;10:e0004512.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kieran TJ, Gottdenker NL, Varian CP, Saldaña A, Means N, Owens D, et al. Blood meal source characterization using Illumina Sequencing in the Chagas disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J Med Entomol. 2017;54:1786–9.
Article
PubMed
Google Scholar
Paudel PK, Bhattarai BP, Kindlmann P. An overview of the biodiversity in Nepal. In: Kindlmann P, editor. Himalayan biodiversity in the changing world. Dordrecht: Springer; 2012. p. 1–40.
Google Scholar
Chaiphongpachara T, Sriwichai P, Samung Y, Ruangsittichai J, Morales Vargas RE, Cui L, et al. Geometric morphometrics approach towards discrimination of three member species of Maculatus group in Thailand Tanawat. Acta Oecol. 2019;192:66–74.
Google Scholar
Alam MT, Das MK, Dev V, Ansari MA, Sharma YD. PCR-RFLP method for the identification of four members of the Anopheles annularis group of mosquitoes (Diptera: Culicidae). Trans R Soc Trop Med Hyg. 2007;101:239–44.
Article
CAS
PubMed
Google Scholar
Chen B, Butlin RK, Pedro PM, Wang XZ, Harbach RE. Molecular variation, systematics and distribution of the Anopheles fluviatilis complex in southern Asia. Med Vet Entomol. 2006;20:33–43.
Article
CAS
PubMed
Google Scholar
Sumarnrote A, Overgaard HJ, Corbel V, Thanispong K, Chareonviriyaphap T, Manguin S. Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasites Vectors. 2020;13:1–13.
Article
CAS
Google Scholar
Maestri S, Cosentino E, Paterno M, Freitag H, Garces JM, Marcolungo L, et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes. 2019;10:468.
Article
CAS
PubMed Central
Google Scholar
Latorre-Pérez A, Gimeno-Valero H, Tanner K, Pascual J, Vilanova C, Porcar M. A round trip to the desert: in situ nanopore sequencing informs targeted bioprospecting. Front Microbiol. 2021;12:1–14.
Article
Google Scholar
Watsa M, Erkenswick GA, Pomerantz A, Prost S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 2020;18:e3000667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumre SP, Acharya D, Lal BK, Brady OJ. Dengue virus on the rise in Nepal. Lancet Infect Dis. 2020;20:889–90.
Article
PubMed
Google Scholar
van den Berg H, Velayudhan R, Yadav RS. Management of insecticides for use in disease vector control: lessons from six countries in Asia and the Middle East. PLOS Negl Trop Dis. 2021;15:1–18.
Google Scholar